3dd4: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
New page: '''Unreleased structure''' The entry 3dd4 is ON HOLD until Paper Publication Authors: Chai, J., Wang, H., Wang, K., Liang, P., Chen, H., Gu, L., Cui, Y. Description: Structural Basis o...
 
No edit summary
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Unreleased structure'''


The entry 3dd4 is ON HOLD  until Paper Publication
==Structural Basis of KChIP4a Modulation of Kv4.3 Slow Inactivation==
<StructureSection load='3dd4' size='340' side='right'caption='[[3dd4]], [[Resolution|resolution]] 3.00&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[3dd4]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3DD4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3DD4 FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3dd4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3dd4 OCA], [https://pdbe.org/3dd4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3dd4 RCSB], [https://www.ebi.ac.uk/pdbsum/3dd4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3dd4 ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/KCIP4_MOUSE KCIP4_MOUSE] Regulatory subunit of Kv4/D (Shal)-type voltage-gated rapidly inactivating A-type potassium channels. Probably modulates channels density, inactivation kinetics and rate of recovery from inactivation in a calcium-dependent and isoform-specific manner. In vitro, modulates KCND3/Kv4.3 and KCND2/Kv4.2 currents (By similarity).<ref>PMID:11805342</ref> <ref>PMID:19109250</ref>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Dynamic inactivation in Kv4 A-type K(+) current plays a critical role in regulating neuronal excitability by shaping action potential waveform and duration. Multifunctional auxiliary KChIP1-4 subunits, which share a high homology in their C-terminal core regions, exhibit distinctive modulation of inactivation and surface expression of pore-forming Kv4 subunits. However, the structural differences that underlie the functional diversity of Kv channel-interacting proteins (KChIPs) remain undetermined. Here we have described the crystal structure of KChIP4a at 3.0A resolution, which shows distinct N-terminal alpha-helices that differentiate it from other KChIPs. Biochemical experiments showed that competitive binding of the Kv4.3 N-terminal peptide to the hydrophobic groove of the core of KChIP4a causes the release of the KChIP4a N terminus that suppresses the inactivation of Kv4.3 channels. Electrophysiology experiments confirmed that the first N-terminal alpha-helix peptide (residues 1-34) of KChIP4a, either by itself or fused to N-terminal truncated Kv4.3, can confer slow inactivation. We propose that N-terminal binding of Kv4.3 to the core of KChIP4a mobilizes the KChIP4a N terminus, which serves as the slow inactivation gate.


Authors: Chai, J., Wang, H., Wang, K., Liang, P., Chen, H., Gu, L., Cui, Y.
Structural Insights into KChIP4a Modulation of Kv4.3 Inactivation.,Liang P, Wang H, Chen H, Cui Y, Gu L, Chai J, Wang K J Biol Chem. 2009 Feb 20;284(8):4960-7. Epub 2008 Dec 24. PMID:19109250<ref>PMID:19109250</ref>


Description: Structural Basis of KChIP4a Modulation of Kv4.3 Slow Inactivation
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Fri Jul 11 13:06:31 2008''
<div class="pdbe-citations 3dd4" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Large Structures]]
[[Category: Mus musculus]]
[[Category: Chai J]]
[[Category: Wang H]]
[[Category: Wang K]]

Latest revision as of 18:07, 1 November 2023

Structural Basis of KChIP4a Modulation of Kv4.3 Slow InactivationStructural Basis of KChIP4a Modulation of Kv4.3 Slow Inactivation

Structural highlights

3dd4 is a 1 chain structure with sequence from Mus musculus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

KCIP4_MOUSE Regulatory subunit of Kv4/D (Shal)-type voltage-gated rapidly inactivating A-type potassium channels. Probably modulates channels density, inactivation kinetics and rate of recovery from inactivation in a calcium-dependent and isoform-specific manner. In vitro, modulates KCND3/Kv4.3 and KCND2/Kv4.2 currents (By similarity).[1] [2]

Publication Abstract from PubMed

Dynamic inactivation in Kv4 A-type K(+) current plays a critical role in regulating neuronal excitability by shaping action potential waveform and duration. Multifunctional auxiliary KChIP1-4 subunits, which share a high homology in their C-terminal core regions, exhibit distinctive modulation of inactivation and surface expression of pore-forming Kv4 subunits. However, the structural differences that underlie the functional diversity of Kv channel-interacting proteins (KChIPs) remain undetermined. Here we have described the crystal structure of KChIP4a at 3.0A resolution, which shows distinct N-terminal alpha-helices that differentiate it from other KChIPs. Biochemical experiments showed that competitive binding of the Kv4.3 N-terminal peptide to the hydrophobic groove of the core of KChIP4a causes the release of the KChIP4a N terminus that suppresses the inactivation of Kv4.3 channels. Electrophysiology experiments confirmed that the first N-terminal alpha-helix peptide (residues 1-34) of KChIP4a, either by itself or fused to N-terminal truncated Kv4.3, can confer slow inactivation. We propose that N-terminal binding of Kv4.3 to the core of KChIP4a mobilizes the KChIP4a N terminus, which serves as the slow inactivation gate.

Structural Insights into KChIP4a Modulation of Kv4.3 Inactivation.,Liang P, Wang H, Chen H, Cui Y, Gu L, Chai J, Wang K J Biol Chem. 2009 Feb 20;284(8):4960-7. Epub 2008 Dec 24. PMID:19109250[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Holmqvist MH, Cao J, Hernandez-Pineda R, Jacobson MD, Carroll KI, Sung MA, Betty M, Ge P, Gilbride KJ, Brown ME, Jurman ME, Lawson D, Silos-Santiago I, Xie Y, Covarrubias M, Rhodes KJ, Distefano PS, An WF. Elimination of fast inactivation in Kv4 A-type potassium channels by an auxiliary subunit domain. Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):1035-40. PMID:11805342 doi:http://dx.doi.org/10.1073/pnas.022509299
  2. Liang P, Wang H, Chen H, Cui Y, Gu L, Chai J, Wang K. Structural Insights into KChIP4a Modulation of Kv4.3 Inactivation. J Biol Chem. 2009 Feb 20;284(8):4960-7. Epub 2008 Dec 24. PMID:19109250 doi:10.1074/jbc.M807704200
  3. Liang P, Wang H, Chen H, Cui Y, Gu L, Chai J, Wang K. Structural Insights into KChIP4a Modulation of Kv4.3 Inactivation. J Biol Chem. 2009 Feb 20;284(8):4960-7. Epub 2008 Dec 24. PMID:19109250 doi:10.1074/jbc.M807704200

3dd4, resolution 3.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA