3bo8: Difference between revisions
No edit summary |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==The High Resolution Crystal Structure of HLA-A1 Complexed with the MAGE-A1 Peptide== | ==The High Resolution Crystal Structure of HLA-A1 Complexed with the MAGE-A1 Peptide== | ||
<StructureSection load='3bo8' size='340' side='right' caption='[[3bo8]], [[Resolution|resolution]] 1.80Å' scene=''> | <StructureSection load='3bo8' size='340' side='right'caption='[[3bo8]], [[Resolution|resolution]] 1.80Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3bo8]] is a 3 chain structure with sequence from [ | <table><tr><td colspan='2'>[[3bo8]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3BO8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3BO8 FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8Å</td></tr> | ||
<tr id=' | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3bo8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3bo8 OCA], [https://pdbe.org/3bo8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3bo8 RCSB], [https://www.ebi.ac.uk/pdbsum/3bo8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3bo8 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Disease == | == Disease == | ||
[ | [https://www.uniprot.org/uniprot/HLAA_HUMAN HLAA_HUMAN] Selection of immunotherapy in solid cancer;Birdshot chorioretinopathy;Prediction of phenytoin or carbamazepine toxicity. Alleles A*02:01 and A*24:02 are associated with increased susceptibility to diabetes mellitus, insulin-dependent (IDDM) (PubMed:22245737, PubMed:18802479, PubMed:16731854, PubMed:22522618). In a glucose-dependent way, allele A*02:01 may aberrantly present the signal peptide of preproinsulin (ALWGPDPAAA) on the surface of pancreatic beta cells to autoreactive CD8-positive T cells, potentially driving T-cell mediated cytotoxicity in pancreatic islets (PubMed:22245737, PubMed:18802479). Allele A*24:02 may present the signal peptide of preproinsulin (LWMRLLPLL) and contribute to acute pancreatic beta-cell destruction and early onset of IDDM (PubMed:16731854, PubMed:22522618).<ref>PMID:16731854</ref> <ref>PMID:18802479</ref> <ref>PMID:22245737</ref> <ref>PMID:22522618</ref> Allele A*03:01 is associated with increased susceptibility to multiple sclerosis (MS), an autoimmune disease of the central nervous system (PubMed:10746785). May contribute to the initiation phase of the disease by presenting myelin PLP1 self-peptide (KLIETYFSK) to autoreactive CD8-positive T cells capable of initiating the first autoimmune attacks (PubMed:18953350).<ref>PMID:10746785</ref> <ref>PMID:18953350</ref> Allele A*26:01 is associated with increased susceptibility to Behcet disease (BD) in the Northeast Asian population. Especially in the HLA-B*51-negative BD populations, HLA-A*26 is significantly associated with the onset of BD.<ref>PMID:30872678</ref> Allele A*29:02 is associated with increased susceptibility to birdshot chorioretinopathy (BSCR). May aberrantly present retinal autoantigens and induce autoimmune uveitis.<ref>PMID:1728143</ref> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/HLAA_HUMAN HLAA_HUMAN] Antigen-presenting major histocompatibility complex class I (MHCI) molecule. In complex with B2M/beta 2 microglobulin displays primarily viral and tumor-derived peptides on antigen-presenting cells for recognition by alpha-beta T cell receptor (TCR) on HLA-A-restricted CD8-positive T cells, guiding antigen-specific T cell immune response to eliminate infected or transformed cells (PubMed:2456340, PubMed:2784196, PubMed:1402688, PubMed:7504010, PubMed:9862734, PubMed:10449296, PubMed:12138174, PubMed:12393434, PubMed:15893615, PubMed:17189421, PubMed:19543285, PubMed:21498667, PubMed:24192765, PubMed:7694806, PubMed:24395804, PubMed:28250417). May also present self-peptides derived from the signal sequence of secreted or membrane proteins, although T cells specific for these peptides are usually inactivated to prevent autoreactivity (PubMed:25880248, PubMed:7506728, PubMed:7679507). Both the peptide and the MHC molecule are recognized by TCR, the peptide is responsible for the fine specificity of antigen recognition and MHC residues account for the MHC restriction of T cells (PubMed:12796775, PubMed:18275829, PubMed:19542454, PubMed:28250417). Typically presents intracellular peptide antigens of 8 to 13 amino acids that arise from cytosolic proteolysis via IFNG-induced immunoproteasome or via endopeptidase IDE/insulin-degrading enzyme (PubMed:17189421, PubMed:20364150, PubMed:17079320, PubMed:26929325, PubMed:27049119). Can bind different peptides containing allele-specific binding motifs, which are mainly defined by anchor residues at position 2 and 9 (PubMed:7504010, PubMed:9862734).<ref>PMID:10449296</ref> <ref>PMID:12138174</ref> <ref>PMID:12393434</ref> <ref>PMID:12796775</ref> <ref>PMID:1402688</ref> <ref>PMID:15893615</ref> <ref>PMID:17079320</ref> <ref>PMID:17189421</ref> <ref>PMID:18275829</ref> <ref>PMID:19542454</ref> <ref>PMID:19543285</ref> <ref>PMID:20364150</ref> <ref>PMID:21498667</ref> <ref>PMID:24192765</ref> <ref>PMID:24395804</ref> <ref>PMID:2456340</ref> <ref>PMID:25880248</ref> <ref>PMID:26929325</ref> <ref>PMID:27049119</ref> <ref>PMID:2784196</ref> <ref>PMID:28250417</ref> <ref>PMID:7504010</ref> <ref>PMID:7506728</ref> <ref>PMID:7679507</ref> <ref>PMID:7694806</ref> <ref>PMID:9862734</ref> Allele A*01:01: Presents a restricted peptide repertoire including viral epitopes derived from IAV NP/nucleoprotein (CTELKLSDY), IAV PB1/polymerase basic protein 1 (VSDGGPNLY), HAdV-11 capsid L3/hexon protein (LTDLGQNLLY), SARS-CoV-2 3a/ORF3a (FTSDYYQLY) as well as tumor peptide antigens including MAGE1 (EADPTGHSY), MAGEA3 (EVDPIGHLY) and WT1 (TSEKRPFMCAY), all having in common a canonical motif with a negatively charged Asp or Glu residue at position 3 and a Tyr anchor residue at the C-terminus (PubMed:1402688, PubMed:7504010, PubMed:17189421, PubMed:20364150, PubMed:25880248, PubMed:30530481, PubMed:19177349, PubMed:24395804, PubMed:26758806, PubMed:32887977). A number of HLA-A*01:01-restricted peptides carry a post-translational modification with oxidation and N-terminal acetylation being the most frequent (PubMed:25880248). Fails to present highly immunogenic peptides from the EBV latent antigens (PubMed:18779413).<ref>PMID:1402688</ref> <ref>PMID:17189421</ref> <ref>PMID:18779413</ref> <ref>PMID:19177349</ref> <ref>PMID:20364150</ref> <ref>PMID:24395804</ref> <ref>PMID:25880248</ref> <ref>PMID:26758806</ref> <ref>PMID:30530481</ref> <ref>PMID:7504010</ref> Allele A*02:01: A major allele in human populations, presents immunodominant viral epitopes derived from IAV M/matrix protein 1 (GILGFVFTL), HIV-1 env (TLTSCNTSV), HIV-1 gag-pol (ILKEPVHGV), HTLV-1 Tax (LLFGYPVYV), HBV C/core antigen (FLPSDFFPS), HCMV UL83/pp65 (NLVPMVATV) as well as tumor peptide antigens including MAGEA4 (GVYDGREHTV), WT1 (RMFPNAPYL) and CTAG1A/NY-ESO-1 (SLLMWITQC), all having in common hydrophobic amino acids at position 2 and at the C-terminal anchors.<ref>PMID:11502003</ref> <ref>PMID:12138174</ref> <ref>PMID:12796775</ref> <ref>PMID:17079320</ref> <ref>PMID:18275829</ref> <ref>PMID:19542454</ref> <ref>PMID:20619457</ref> <ref>PMID:22245737</ref> <ref>PMID:26929325</ref> <ref>PMID:2784196</ref> <ref>PMID:28250417</ref> <ref>PMID:7694806</ref> <ref>PMID:7935798</ref> <ref>PMID:8630735</ref> <ref>PMID:8805302</ref> <ref>PMID:8906788</ref> <ref>PMID:9177355</ref> Allele A*03:01: Presents viral epitopes derived from IAV NP (ILRGSVAHK), HIV-1 nef (QVPLRPMTYK), HIV-1 gag-pol (AIFQSSMTK), SARS-CoV-2 N/nucleoprotein (KTFPPTEPK) as well as tumor peptide antigens including PMEL (LIYRRRLMK), NODAL (HAYIQSLLK), TRP-2 (RMYNMVPFF), all having in common hydrophobic amino acids at position 2 and Lys or Arg anchor residues at the C-terminus (PubMed:7504010, PubMed:7679507, PubMed:9862734, PubMed:19543285, PubMed:21943705, PubMed:2456340, PubMed:32887977). May also display spliced peptides resulting from the ligation of two separate proteasomal cleavage products that are not contiguous in the parental protein (PubMed:27049119).<ref>PMID:19543285</ref> <ref>PMID:21943705</ref> <ref>PMID:2456340</ref> <ref>PMID:27049119</ref> <ref>PMID:7504010</ref> <ref>PMID:7679507</ref> <ref>PMID:9862734</ref> Allele A*11:01: Presents several immunodominant epitopes derived from HIV-1 gag-pol and HHV-4 EBNA4, containing the peptide motif with Val, Ile, Thr, Leu, Tyr or Phe at position 2 and Lys anchor residue at the C-terminus. Important in the control of HIV-1, EBV and HBV infections (PubMed:10449296). Presents an immunodominant epitope derived from SARS-CoV-2 N/nucleoprotein (KTFPPTEPK) (PubMed:32887977).<ref>PMID:10449296</ref> <ref>PMID:32887977</ref> Allele A*23:01: Interacts with natural killer (NK) cell receptor KIR3DL1 and may contribute to functional maturation of NK cells and self-nonself discrimination during innate immune response.<ref>PMID:17182537</ref> Allele A*24:02: Presents viral epitopes derived from HIV-1 nef (RYPLTFGWCF), EBV lytic- and latent-cycle antigens BRLF1 (TYPVLEEMF), BMLF1 (DYNFVKQLF) and LMP2 (IYVLVMLVL), SARS-CoV nucleocapsid/N (QFKDNVILL), as well as tumor peptide antigens including PRAME (LYVDSLFFL), all sharing a common signature motif, namely an aromatic residue Tyr or Phe at position 2 and a nonhydrophobic anchor residue Phe, Leu or Iso at the C-terminus (PubMed:9047241, PubMed:12393434, PubMed:24192765, PubMed:20844028). Interacts with natural killer (NK) cell receptor KIR3DL1 and may contribute to functional maturation of NK cells and self-nonself discrimination during innate immune response (PubMed:17182537, PubMed:18502829).<ref>PMID:12393434</ref> <ref>PMID:17182537</ref> <ref>PMID:18502829</ref> <ref>PMID:20844028</ref> <ref>PMID:24192765</ref> <ref>PMID:9047241</ref> Allele A*26:01: Presents several epitopes derived from HIV-1 gag-pol (EVIPMFSAL, ETKLGKAGY) and env (LVSDGGPNLY), carrying as anchor residues preferentially Glu at position 1, Val or Thr at position 2 and Tyr at the C-terminus.<ref>PMID:15893615</ref> Allele A*29:02: Presents peptides having a common motif, namely a Glu residue at position 2 and Tyr or Leu anchor residues at the C-terminus.<ref>PMID:8622959</ref> Allele A*32:01: Interacts with natural killer (NK) cell receptor KIR3DL1 and may contribute to functional maturation of NK cells and self-nonself discrimination during innate immune response.<ref>PMID:17182537</ref> Allele A*68:01: Presents viral epitopes derived from IAV NP (KTGGPIYKR) and HIV-1 tat (ITKGLGISYGR), having a common signature motif namely, Val or Thr at position 2 and positively charged residues Arg or Lys at the C-terminal anchor.<ref>PMID:1448153</ref> <ref>PMID:1448154</ref> <ref>PMID:2784196</ref> Allele A*74:01: Presents immunodominant HIV-1 epitopes derived from gag-pol (GQMVHQAISPR, QIYPGIKVR) and rev (RQIHSISER), carrying an aliphatic residue at position 2 and Arg anchor residue at the C-terminus. May contribute to viral load control in chronic HIV-1 infection.<ref>PMID:21498667</ref> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/bo/3bo8_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/bo/3bo8_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
Line 33: | Line 33: | ||
==See Also== | ==See Also== | ||
*[[Beta-2 microglobulin|Beta-2 microglobulin]] | *[[Beta-2 microglobulin 3D structures|Beta-2 microglobulin 3D structures]] | ||
*[[ | *[[MHC 3D structures|MHC 3D structures]] | ||
*[[MHC I 3D structures|MHC I 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Homo sapiens]] | ||
[[Category: Kumar | [[Category: Large Structures]] | ||
[[Category: Saenger | [[Category: Kumar P]] | ||
[[Category: Uchanska-Ziegler | [[Category: Saenger W]] | ||
[[Category: Vahedi-Faridi | [[Category: Uchanska-Ziegler B]] | ||
[[Category: Ziegler | [[Category: Vahedi-Faridi A]] | ||
[[Category: Ziegler A]] | |||
Latest revision as of 17:48, 1 November 2023
The High Resolution Crystal Structure of HLA-A1 Complexed with the MAGE-A1 PeptideThe High Resolution Crystal Structure of HLA-A1 Complexed with the MAGE-A1 Peptide
Structural highlights
DiseaseHLAA_HUMAN Selection of immunotherapy in solid cancer;Birdshot chorioretinopathy;Prediction of phenytoin or carbamazepine toxicity. Alleles A*02:01 and A*24:02 are associated with increased susceptibility to diabetes mellitus, insulin-dependent (IDDM) (PubMed:22245737, PubMed:18802479, PubMed:16731854, PubMed:22522618). In a glucose-dependent way, allele A*02:01 may aberrantly present the signal peptide of preproinsulin (ALWGPDPAAA) on the surface of pancreatic beta cells to autoreactive CD8-positive T cells, potentially driving T-cell mediated cytotoxicity in pancreatic islets (PubMed:22245737, PubMed:18802479). Allele A*24:02 may present the signal peptide of preproinsulin (LWMRLLPLL) and contribute to acute pancreatic beta-cell destruction and early onset of IDDM (PubMed:16731854, PubMed:22522618).[1] [2] [3] [4] Allele A*03:01 is associated with increased susceptibility to multiple sclerosis (MS), an autoimmune disease of the central nervous system (PubMed:10746785). May contribute to the initiation phase of the disease by presenting myelin PLP1 self-peptide (KLIETYFSK) to autoreactive CD8-positive T cells capable of initiating the first autoimmune attacks (PubMed:18953350).[5] [6] Allele A*26:01 is associated with increased susceptibility to Behcet disease (BD) in the Northeast Asian population. Especially in the HLA-B*51-negative BD populations, HLA-A*26 is significantly associated with the onset of BD.[7] Allele A*29:02 is associated with increased susceptibility to birdshot chorioretinopathy (BSCR). May aberrantly present retinal autoantigens and induce autoimmune uveitis.[8] FunctionHLAA_HUMAN Antigen-presenting major histocompatibility complex class I (MHCI) molecule. In complex with B2M/beta 2 microglobulin displays primarily viral and tumor-derived peptides on antigen-presenting cells for recognition by alpha-beta T cell receptor (TCR) on HLA-A-restricted CD8-positive T cells, guiding antigen-specific T cell immune response to eliminate infected or transformed cells (PubMed:2456340, PubMed:2784196, PubMed:1402688, PubMed:7504010, PubMed:9862734, PubMed:10449296, PubMed:12138174, PubMed:12393434, PubMed:15893615, PubMed:17189421, PubMed:19543285, PubMed:21498667, PubMed:24192765, PubMed:7694806, PubMed:24395804, PubMed:28250417). May also present self-peptides derived from the signal sequence of secreted or membrane proteins, although T cells specific for these peptides are usually inactivated to prevent autoreactivity (PubMed:25880248, PubMed:7506728, PubMed:7679507). Both the peptide and the MHC molecule are recognized by TCR, the peptide is responsible for the fine specificity of antigen recognition and MHC residues account for the MHC restriction of T cells (PubMed:12796775, PubMed:18275829, PubMed:19542454, PubMed:28250417). Typically presents intracellular peptide antigens of 8 to 13 amino acids that arise from cytosolic proteolysis via IFNG-induced immunoproteasome or via endopeptidase IDE/insulin-degrading enzyme (PubMed:17189421, PubMed:20364150, PubMed:17079320, PubMed:26929325, PubMed:27049119). Can bind different peptides containing allele-specific binding motifs, which are mainly defined by anchor residues at position 2 and 9 (PubMed:7504010, PubMed:9862734).[9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] Allele A*01:01: Presents a restricted peptide repertoire including viral epitopes derived from IAV NP/nucleoprotein (CTELKLSDY), IAV PB1/polymerase basic protein 1 (VSDGGPNLY), HAdV-11 capsid L3/hexon protein (LTDLGQNLLY), SARS-CoV-2 3a/ORF3a (FTSDYYQLY) as well as tumor peptide antigens including MAGE1 (EADPTGHSY), MAGEA3 (EVDPIGHLY) and WT1 (TSEKRPFMCAY), all having in common a canonical motif with a negatively charged Asp or Glu residue at position 3 and a Tyr anchor residue at the C-terminus (PubMed:1402688, PubMed:7504010, PubMed:17189421, PubMed:20364150, PubMed:25880248, PubMed:30530481, PubMed:19177349, PubMed:24395804, PubMed:26758806, PubMed:32887977). A number of HLA-A*01:01-restricted peptides carry a post-translational modification with oxidation and N-terminal acetylation being the most frequent (PubMed:25880248). Fails to present highly immunogenic peptides from the EBV latent antigens (PubMed:18779413).[35] [36] [37] [38] [39] [40] [41] [42] [43] [44] Allele A*02:01: A major allele in human populations, presents immunodominant viral epitopes derived from IAV M/matrix protein 1 (GILGFVFTL), HIV-1 env (TLTSCNTSV), HIV-1 gag-pol (ILKEPVHGV), HTLV-1 Tax (LLFGYPVYV), HBV C/core antigen (FLPSDFFPS), HCMV UL83/pp65 (NLVPMVATV) as well as tumor peptide antigens including MAGEA4 (GVYDGREHTV), WT1 (RMFPNAPYL) and CTAG1A/NY-ESO-1 (SLLMWITQC), all having in common hydrophobic amino acids at position 2 and at the C-terminal anchors.[45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] Allele A*03:01: Presents viral epitopes derived from IAV NP (ILRGSVAHK), HIV-1 nef (QVPLRPMTYK), HIV-1 gag-pol (AIFQSSMTK), SARS-CoV-2 N/nucleoprotein (KTFPPTEPK) as well as tumor peptide antigens including PMEL (LIYRRRLMK), NODAL (HAYIQSLLK), TRP-2 (RMYNMVPFF), all having in common hydrophobic amino acids at position 2 and Lys or Arg anchor residues at the C-terminus (PubMed:7504010, PubMed:7679507, PubMed:9862734, PubMed:19543285, PubMed:21943705, PubMed:2456340, PubMed:32887977). May also display spliced peptides resulting from the ligation of two separate proteasomal cleavage products that are not contiguous in the parental protein (PubMed:27049119).[62] [63] [64] [65] [66] [67] [68] Allele A*11:01: Presents several immunodominant epitopes derived from HIV-1 gag-pol and HHV-4 EBNA4, containing the peptide motif with Val, Ile, Thr, Leu, Tyr or Phe at position 2 and Lys anchor residue at the C-terminus. Important in the control of HIV-1, EBV and HBV infections (PubMed:10449296). Presents an immunodominant epitope derived from SARS-CoV-2 N/nucleoprotein (KTFPPTEPK) (PubMed:32887977).[69] [70] Allele A*23:01: Interacts with natural killer (NK) cell receptor KIR3DL1 and may contribute to functional maturation of NK cells and self-nonself discrimination during innate immune response.[71] Allele A*24:02: Presents viral epitopes derived from HIV-1 nef (RYPLTFGWCF), EBV lytic- and latent-cycle antigens BRLF1 (TYPVLEEMF), BMLF1 (DYNFVKQLF) and LMP2 (IYVLVMLVL), SARS-CoV nucleocapsid/N (QFKDNVILL), as well as tumor peptide antigens including PRAME (LYVDSLFFL), all sharing a common signature motif, namely an aromatic residue Tyr or Phe at position 2 and a nonhydrophobic anchor residue Phe, Leu or Iso at the C-terminus (PubMed:9047241, PubMed:12393434, PubMed:24192765, PubMed:20844028). Interacts with natural killer (NK) cell receptor KIR3DL1 and may contribute to functional maturation of NK cells and self-nonself discrimination during innate immune response (PubMed:17182537, PubMed:18502829).[72] [73] [74] [75] [76] [77] Allele A*26:01: Presents several epitopes derived from HIV-1 gag-pol (EVIPMFSAL, ETKLGKAGY) and env (LVSDGGPNLY), carrying as anchor residues preferentially Glu at position 1, Val or Thr at position 2 and Tyr at the C-terminus.[78] Allele A*29:02: Presents peptides having a common motif, namely a Glu residue at position 2 and Tyr or Leu anchor residues at the C-terminus.[79] Allele A*32:01: Interacts with natural killer (NK) cell receptor KIR3DL1 and may contribute to functional maturation of NK cells and self-nonself discrimination during innate immune response.[80] Allele A*68:01: Presents viral epitopes derived from IAV NP (KTGGPIYKR) and HIV-1 tat (ITKGLGISYGR), having a common signature motif namely, Val or Thr at position 2 and positively charged residues Arg or Lys at the C-terminal anchor.[81] [82] [83] Allele A*74:01: Presents immunodominant HIV-1 epitopes derived from gag-pol (GQMVHQAISPR, QIYPGIKVR) and rev (RQIHSISER), carrying an aliphatic residue at position 2 and Arg anchor residue at the C-terminus. May contribute to viral load control in chronic HIV-1 infection.[84] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedAlthough there is X-ray crystallographic evidence that the interaction between major histocompatibility complex (MHC, in humans HLA) class I molecules and T cell receptors (TCR) or killer cell Ig-like receptors (KIR) may be accompanied by considerable changes in the conformation of selected residues or even entire loops within TCR or KIR, conformational changes between receptor-bound and -unbound MHC class I molecules of comparable magnitude have not been observed so far. We have previously determined the structure of the MHC class I molecule HLA-A1 bound to a melanoma antigen-encoding gene (MAGE)-A1-derived peptide in complex with a recombinant antibody fragment with TCR-like specificity, Fab-Hyb3. Here, we compare the X-ray structure of HLA-A1:MAGE-A1 with that complexed with Fab-Hyb3 to gain insight into structural changes of the MHC molecule that might be induced by the interaction with the antibody fragment. Apart from the expulsion of several water molecules from the interface, Fab-Hyb3 binding results in major rearrangements (up to 5.5 A) of heavy chain residues Arg65, Gln72, Arg145, and Lys146. Residue 65 is frequently and residues 72 and 146 are occasionally involved in TCR binding-induced conformational changes, as revealed by a comparison with MHC class I structures in TCR-liganded and -unliganded forms. On the other hand, residue 145 is subject to a reorientation following engagement of HLA-Cw4 and KIR2DL1. Therefore, conformational changes within the HLA-A1:MAGE-A1:Fab-Hyb3 complex include MHC residues that are also involved in reorientations in complexes with natural ligands, pointing to their central importance for the peptide-dependent recognition of MHC molecules. Conformational changes within the HLA-A1:MAGE-A1 complex induced by binding of a recombinant antibody fragment with TCR-like specificity.,Kumar P, Vahedi-Faridi A, Saenger W, Ziegler A, Uchanska-Ziegler B Protein Sci. 2009 Jan;18(1):37-49. PMID:19177349[85] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|