2rkw: Difference between revisions
No edit summary |
No edit summary |
||
(15 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
< | ==Intermediate position of ATP on its trail to the binding pocket inside the subunit B mutant R416W of the energy converter A1Ao ATP synthase== | ||
<StructureSection load='2rkw' size='340' side='right'caption='[[2rkw]], [[Resolution|resolution]] 2.81Å' scene=''> | |||
You may | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2rkw]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Methanosarcina_mazei Methanosarcina mazei]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2RKW OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2RKW FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.81Å</td></tr> | |||
-- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2rkw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2rkw OCA], [https://pdbe.org/2rkw PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2rkw RCSB], [https://www.ebi.ac.uk/pdbsum/2rkw PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2rkw ProSAT]</span></td></tr> | ||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/VATB_METMA VATB_METMA] Produces ATP from ADP in the presence of a proton gradient across the membrane. The archaeal beta chain is a regulatory subunit. | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/rk/2rkw_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2rkw ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
A strategically placed tryptophan in position of Arg416 was used as an optical probe to monitor adenosine triphosphate and adenosine-diphosphate binding to subunit B of the A(1)A(O) adenosine triphosphate (ATP) synthase from Methanosarcina mazei Go1. Tryptophan fluorescence and fluorescence correlation spectroscopy gave binding constants indicating a preferred binding of ATP over ADP to the protein. The X-ray crystal structure of the R416W mutant protein in the presence of ATP was solved to 2.1 A resolution, showing the substituted Trp-residue inside the predicted adenine-binding pocket. The cocrystallized ATP molecule could be trapped in a so-called transition nucleotide-binding state. The high resolution structure shows the phosphate residues of the ATP near the P-loop region (S150-E158) and its adenine ring forms pi-pi interaction with Phe149. This transition binding position of ATP could be confirmed by tryptophan emission spectra using the subunit B mutant F149W. The trapped ATP position, similar to the one of the binding region of the antibiotic efrapeptin in F(1)F(O) ATP synthases, is discussed in light of a transition nucleotide-binding state of ATP while on its way to the final binding pocket. Finally, the inhibitory effect of efrapeptin C in ATPase activity of a reconstituted A(3)B(3)- and A(3)B(R416W)(3)-subcomplex, composed of subunit A and the B subunit mutant R416W, of the A(1)A(O) ATP synthase is shown. | |||
Spectroscopic and crystallographic studies of the mutant R416W give insight into the nucleotide binding traits of subunit B of the A1Ao ATP synthase.,Kumar A, Manimekalai MS, Balakrishna AM, Hunke C, Weigelt S, Sewald N, Gruber G Proteins. 2009 Jun;75(4):807-19. PMID:19003877<ref>PMID:19003877</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2rkw" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[ATPase 3D structures|ATPase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
== | [[Category: Large Structures]] | ||
== | |||
[[Category: Methanosarcina mazei]] | [[Category: Methanosarcina mazei]] | ||
[[Category: Balakrishna AM]] | |||
[[Category: Balakrishna | [[Category: Gruber G]] | ||
[[Category: Gruber | [[Category: Hunke C]] | ||
[[Category: Hunke | [[Category: Kumar A]] | ||
[[Category: Kumar | [[Category: Manimekalai MSS]] | ||
[[Category: Manimekalai | |||