2a1m: Difference between revisions
No edit summary |
No edit summary |
||
(12 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal structure of ferrous dioxygen complex of wild-type cytochrome P450cam== | |||
<StructureSection load='2a1m' size='340' side='right'caption='[[2a1m]], [[Resolution|resolution]] 2.10Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2a1m]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Pseudomonas_putida Pseudomonas putida]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2A1M OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2A1M FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.1Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CAM:CAMPHOR'>CAM</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=OXY:OXYGEN+MOLECULE'>OXY</scene>, <scene name='pdbligand=TRS:2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>TRS</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2a1m FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2a1m OCA], [https://pdbe.org/2a1m PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2a1m RCSB], [https://www.ebi.ac.uk/pdbsum/2a1m PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2a1m ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/CPXA_PSEPU CPXA_PSEPU] Involved in a camphor oxidation system. | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/a1/2a1m_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2a1m ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Two key amino acids, Thr252 and Asp251, are known to be important for dioxygen activation by cytochrome P450cam. We have solved crystal structures of a critical intermediate, the ferrous dioxygen complex (Fe(II)-O2), of the wild-type P450cam and its mutants, D251N and T252A. The wild-type dioxygen complex structure is very much the same as reported previously (Schlichting, I., Berendzen, J., Chu, K., Stock, A. M., Maves, S. A., Benson, D. E., Sweet, R. M., Ringe, D., Petsko, G. A., and Sligar, S. G. (2000) Science 287, 1615-1622) with the exception of higher occupancy and a more ordered structure of the iron-linked dioxygen and two "catalytic" water molecules that form part of a proton relay system to the iron-linked dioxygen. Due to of the altered conformation of the I helix groove these two waters are missing in the D251N dioxygen complex which explains its lower catalytic activity and slower proton transfer to the dioxygen ligand. Similarly, the T252A mutation was expected to disrupt the active site solvent structure leading to hydrogen peroxide formation rather than substrate hydroxylation. Unexpectedly, however, the two "catalytic" waters are retained in the T252A mutant. Based on these findings, we propose that the Thr(252) accepts a hydrogen bond from the hydroperoxy (Fe(III)-OOH) intermediate that promotes the second protonation on the distal oxygen atom, leading to O-O bond cleavage and compound I formation. | |||
Crystallographic study on the dioxygen complex of wild-type and mutant cytochrome P450cam. Implications for the dioxygen activation mechanism.,Nagano S, Poulos TL J Biol Chem. 2005 Sep 9;280(36):31659-63. Epub 2005 Jun 30. PMID:15994329<ref>PMID:15994329</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2a1m" style="background-color:#fffaf0;"></div> | |||
== | ==See Also== | ||
*[[Cytochrome P450 3D structures|Cytochrome P450 3D structures]] | |||
[[Category: | == References == | ||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Large Structures]] | |||
[[Category: Pseudomonas putida]] | [[Category: Pseudomonas putida]] | ||
[[Category: Nagano S]] | |||
[[Category: Nagano | [[Category: Poulos TL]] | ||
[[Category: Poulos | |||
Latest revision as of 11:15, 25 October 2023
Crystal structure of ferrous dioxygen complex of wild-type cytochrome P450camCrystal structure of ferrous dioxygen complex of wild-type cytochrome P450cam
Structural highlights
FunctionCPXA_PSEPU Involved in a camphor oxidation system. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedTwo key amino acids, Thr252 and Asp251, are known to be important for dioxygen activation by cytochrome P450cam. We have solved crystal structures of a critical intermediate, the ferrous dioxygen complex (Fe(II)-O2), of the wild-type P450cam and its mutants, D251N and T252A. The wild-type dioxygen complex structure is very much the same as reported previously (Schlichting, I., Berendzen, J., Chu, K., Stock, A. M., Maves, S. A., Benson, D. E., Sweet, R. M., Ringe, D., Petsko, G. A., and Sligar, S. G. (2000) Science 287, 1615-1622) with the exception of higher occupancy and a more ordered structure of the iron-linked dioxygen and two "catalytic" water molecules that form part of a proton relay system to the iron-linked dioxygen. Due to of the altered conformation of the I helix groove these two waters are missing in the D251N dioxygen complex which explains its lower catalytic activity and slower proton transfer to the dioxygen ligand. Similarly, the T252A mutation was expected to disrupt the active site solvent structure leading to hydrogen peroxide formation rather than substrate hydroxylation. Unexpectedly, however, the two "catalytic" waters are retained in the T252A mutant. Based on these findings, we propose that the Thr(252) accepts a hydrogen bond from the hydroperoxy (Fe(III)-OOH) intermediate that promotes the second protonation on the distal oxygen atom, leading to O-O bond cleavage and compound I formation. Crystallographic study on the dioxygen complex of wild-type and mutant cytochrome P450cam. Implications for the dioxygen activation mechanism.,Nagano S, Poulos TL J Biol Chem. 2005 Sep 9;280(36):31659-63. Epub 2005 Jun 30. PMID:15994329[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|