1v4y: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1v4y.jpg|left|200px]]


{{Structure
==The functional role of the binuclear metal center in D-aminoacylase. One-metal activation and second-metal attenuation==
|PDB= 1v4y |SIZE=350|CAPTION= <scene name='initialview01'>1v4y</scene>, resolution 1.65&Aring;
<StructureSection load='1v4y' size='340' side='right'caption='[[1v4y]], [[Resolution|resolution]] 1.65&Aring;' scene=''>
|SITE=  
== Structural highlights ==
|LIGAND= <scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene> and <scene name='pdbligand=ZN:ZINC ION'>ZN</scene>
<table><tr><td colspan='2'>[[1v4y]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Alcaligenes_faecalis Alcaligenes faecalis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1V4Y OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1V4Y FirstGlance]. <br>
|ACTIVITY= [http://en.wikipedia.org/wiki/N-acyl-D-amino-acid_deacylase N-acyl-D-amino-acid deacylase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.5.1.81 3.5.1.81]  
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.65&#8491;</td></tr>
|GENE= DA1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=511 Alcaligenes faecalis])
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
}}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1v4y FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1v4y OCA], [https://pdbe.org/1v4y PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1v4y RCSB], [https://www.ebi.ac.uk/pdbsum/1v4y PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1v4y ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/Q9AGH8_ALCFA Q9AGH8_ALCFA]  
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/v4/1v4y_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1v4y ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Our structural comparison of the TIM barrel metal-dependent hydrolase(-like) superfamily suggests a classification of their divergent active sites into four types: alphabeta-binuclear, alpha-mononuclear, beta-mononuclear, and metal-independent subsets. The d-aminoacylase from Alcaligenes faecalis DA1 belongs to the beta-mononuclear subset due to the fact that the catalytically essential Zn(2+) is tightly bound at the beta site with coordination by Cys(96), His(220), and His(250), even though it possesses a binuclear active site with a weak alpha binding site. Additional Zn(2+), Cd(2+), and Cu(2+), but not Ni(2+), Co(2+), Mg(2+), Mn(2+), and Ca(2+), can inhibit enzyme activity. Crystal structures of these metal derivatives show that Zn(2+) and Cd(2+) bind at the alpha(1) subsite ligated by His(67), His(69), and Asp(366), while Cu(2+) at the alpha(2) subsite is chelated by His(67), His(69) and Cys(96). Unexpectedly, the crystal structure of the inactive H220A mutant displays that the endogenous Zn(2+) shifts to the alpha(3) subsite coordinated by His(67), His(69), Cys(96), and Asp(366), revealing that elimination of the beta site changes the coordination geometry of the alpha ion with an enhanced affinity. Kinetic studies of the metal ligand mutants such as C96D indicate the uniqueness of the unusual bridging cysteine and its involvement in catalysis. Therefore, the two metal-binding sites in the d-aminoacylase are interactive with partially mutual exclusion, thus resulting in widely different affinities for the activation/attenuation mechanism, in which the enzyme is activated by the metal ion at the beta site, but inhibited by the subsequent binding of the second ion at the alpha site.


'''The functional role of the binuclear metal center in D-aminoacylase. One-metal activation and second-metal attenuation'''
The functional role of the binuclear metal center in D-aminoacylase: one-metal activation and second-metal attenuation.,Lai WL, Chou LY, Ting CY, Kirby R, Tsai YC, Wang AH, Liaw SH J Biol Chem. 2004 Apr 2;279(14):13962-7. Epub 2004 Jan 21. PMID:14736882<ref>PMID:14736882</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1v4y" style="background-color:#fffaf0;"></div>


==Overview==
==See Also==
Our structural comparison of the TIM barrel metal-dependent hydrolase(-like) superfamily suggests a classification of their divergent active sites into four types: alphabeta-binuclear, alpha-mononuclear, beta-mononuclear, and metal-independent subsets. The d-aminoacylase from Alcaligenes faecalis DA1 belongs to the beta-mononuclear subset due to the fact that the catalytically essential Zn(2+) is tightly bound at the beta site with coordination by Cys(96), His(220), and His(250), even though it possesses a binuclear active site with a weak alpha binding site. Additional Zn(2+), Cd(2+), and Cu(2+), but not Ni(2+), Co(2+), Mg(2+), Mn(2+), and Ca(2+), can inhibit enzyme activity. Crystal structures of these metal derivatives show that Zn(2+) and Cd(2+) bind at the alpha(1) subsite ligated by His(67), His(69), and Asp(366), while Cu(2+) at the alpha(2) subsite is chelated by His(67), His(69) and Cys(96). Unexpectedly, the crystal structure of the inactive H220A mutant displays that the endogenous Zn(2+) shifts to the alpha(3) subsite coordinated by His(67), His(69), Cys(96), and Asp(366), revealing that elimination of the beta site changes the coordination geometry of the alpha ion with an enhanced affinity. Kinetic studies of the metal ligand mutants such as C96D indicate the uniqueness of the unusual bridging cysteine and its involvement in catalysis. Therefore, the two metal-binding sites in the d-aminoacylase are interactive with partially mutual exclusion, thus resulting in widely different affinities for the activation/attenuation mechanism, in which the enzyme is activated by the metal ion at the beta site, but inhibited by the subsequent binding of the second ion at the alpha site.
*[[Aminoacylase 3D structures|Aminoacylase 3D structures]]
 
== References ==
==About this Structure==
<references/>
1V4Y is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Alcaligenes_faecalis Alcaligenes faecalis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1V4Y OCA].
__TOC__
 
</StructureSection>
==Reference==
The functional role of the binuclear metal center in D-aminoacylase: one-metal activation and second-metal attenuation., Lai WL, Chou LY, Ting CY, Kirby R, Tsai YC, Wang AH, Liaw SH, J Biol Chem. 2004 Apr 2;279(14):13962-7. Epub 2004 Jan 21. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/14736882 14736882]
[[Category: Alcaligenes faecalis]]
[[Category: Alcaligenes faecalis]]
[[Category: N-acyl-D-amino-acid deacylase]]
[[Category: Large Structures]]
[[Category: Single protein]]
[[Category: Chou LY]]
[[Category: Chou, L Y.]]
[[Category: Lai WL]]
[[Category: Lai, W L.]]
[[Category: Liaw SH]]
[[Category: Liaw, S H.]]
[[Category: Ting CY]]
[[Category: Ting, C Y.]]
[[Category: Tsai YC]]
[[Category: Tsai, Y C.]]
[[Category: ACT]]
[[Category: ZN]]
[[Category: beta barrel]]
[[Category: insertion]]
[[Category: tim barrel]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 14:40:54 2008''

Latest revision as of 10:46, 25 October 2023

The functional role of the binuclear metal center in D-aminoacylase. One-metal activation and second-metal attenuationThe functional role of the binuclear metal center in D-aminoacylase. One-metal activation and second-metal attenuation

Structural highlights

1v4y is a 1 chain structure with sequence from Alcaligenes faecalis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.65Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

Q9AGH8_ALCFA

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Our structural comparison of the TIM barrel metal-dependent hydrolase(-like) superfamily suggests a classification of their divergent active sites into four types: alphabeta-binuclear, alpha-mononuclear, beta-mononuclear, and metal-independent subsets. The d-aminoacylase from Alcaligenes faecalis DA1 belongs to the beta-mononuclear subset due to the fact that the catalytically essential Zn(2+) is tightly bound at the beta site with coordination by Cys(96), His(220), and His(250), even though it possesses a binuclear active site with a weak alpha binding site. Additional Zn(2+), Cd(2+), and Cu(2+), but not Ni(2+), Co(2+), Mg(2+), Mn(2+), and Ca(2+), can inhibit enzyme activity. Crystal structures of these metal derivatives show that Zn(2+) and Cd(2+) bind at the alpha(1) subsite ligated by His(67), His(69), and Asp(366), while Cu(2+) at the alpha(2) subsite is chelated by His(67), His(69) and Cys(96). Unexpectedly, the crystal structure of the inactive H220A mutant displays that the endogenous Zn(2+) shifts to the alpha(3) subsite coordinated by His(67), His(69), Cys(96), and Asp(366), revealing that elimination of the beta site changes the coordination geometry of the alpha ion with an enhanced affinity. Kinetic studies of the metal ligand mutants such as C96D indicate the uniqueness of the unusual bridging cysteine and its involvement in catalysis. Therefore, the two metal-binding sites in the d-aminoacylase are interactive with partially mutual exclusion, thus resulting in widely different affinities for the activation/attenuation mechanism, in which the enzyme is activated by the metal ion at the beta site, but inhibited by the subsequent binding of the second ion at the alpha site.

The functional role of the binuclear metal center in D-aminoacylase: one-metal activation and second-metal attenuation.,Lai WL, Chou LY, Ting CY, Kirby R, Tsai YC, Wang AH, Liaw SH J Biol Chem. 2004 Apr 2;279(14):13962-7. Epub 2004 Jan 21. PMID:14736882[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Lai WL, Chou LY, Ting CY, Kirby R, Tsai YC, Wang AH, Liaw SH. The functional role of the binuclear metal center in D-aminoacylase: one-metal activation and second-metal attenuation. J Biol Chem. 2004 Apr 2;279(14):13962-7. Epub 2004 Jan 21. PMID:14736882 doi:http://dx.doi.org/10.1074/jbc.M308849200

1v4y, resolution 1.65Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA