1s1r: Difference between revisions
No edit summary |
No edit summary |
||
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal structures of prostaglandin D2 11-ketoreductase (AKR1C3) in complex with the non-steroidal anti-inflammatory drugs flufenamic acid and indomethacin== | |||
<StructureSection load='1s1r' size='340' side='right'caption='[[1s1r]], [[Resolution|resolution]] 2.00Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1s1r]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1S1R OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1S1R FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=MPD:(4S)-2-METHYL-2,4-PENTANEDIOL'>MPD</scene>, <scene name='pdbligand=NAP:NADP+NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NAP</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1s1r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1s1r OCA], [https://pdbe.org/1s1r PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1s1r RCSB], [https://www.ebi.ac.uk/pdbsum/1s1r PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1s1r ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/AK1C3_HUMAN AK1C3_HUMAN] Catalyzes the conversion of aldehydes and ketones to alcohols. Catalyzes the reduction of prostaglandin (PG) D2, PGH2 and phenanthrenequinone (PQ) and the oxidation of 9-alpha,11-beta-PGF2 to PGD2. Functions as a bi-directional 3-alpha-, 17-beta- and 20-alpha HSD. Can interconvert active androgens, estrogens and progestins with their cognate inactive metabolites. Preferentially transforms androstenedione (4-dione) to testosterone. | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/s1/1s1r_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1s1r ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
It is becoming increasingly well established that nonsteroidal anti-inflammatory drugs (NSAID) protect against tumors of the gastrointestinal tract and that they may also protect against a variety of other tumors. These activities have been widely attributed to the inhibition of cylooxygenases (COX) and, in particular, COX-2. However, several observations have indicated that other targets may be involved. Besides targeting COX, certain NSAID also inhibit enzymes belonging to the aldo-keto reductase (AKR) family, including AKR1C3. We have demonstrated previously that overexpression of AKR1C3 acts to suppress cell differentiation and promote proliferation in myeloid cells. However, this enzyme has a broad tissue distribution and therefore represents a novel candidate for the target of the COX-independent antineoplastic actions of NSAID. Here we report on the X-ray crystal structures of AKR1C3 complexed with the NSAID indomethacin (1.8 A resolution) or flufenamic acid (1.7 A resolution). One molecule of indomethacin is bound in the active site, whereas flufenamic acid binds to both the active site and the beta-hairpin loop, at the opposite end of the central beta-barrel. Two other crystal structures (1.20 and 2.1 A resolution) show acetate bound in the active site occupying the proposed oxyanion hole. The data underline AKR1C3 as a COX-independent target for NSAID and will provide a structural basis for the future development of new cancer therapies with reduced COX-dependent side effects. | |||
Crystal structures of prostaglandin D(2) 11-ketoreductase (AKR1C3) in complex with the nonsteroidal anti-inflammatory drugs flufenamic acid and indomethacin.,Lovering AL, Ride JP, Bunce CM, Desmond JC, Cummings SM, White SA Cancer Res. 2004 Mar 1;64(5):1802-10. PMID:14996743<ref>PMID:14996743</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1s1r" style="background-color:#fffaf0;"></div> | |||
== | ==See Also== | ||
[[ | *[[Prostaglandin F synthase 3D structures|Prostaglandin F synthase 3D structures]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: | [[Category: Bunce CM]] | ||
[[Category: | [[Category: Cummings SM]] | ||
[[Category: | [[Category: Desmond JC]] | ||
[[Category: | [[Category: Lovering AL]] | ||
[[Category: | [[Category: Ride JP]] | ||
[[Category: | [[Category: White SA]] | ||
Latest revision as of 10:25, 25 October 2023
Crystal structures of prostaglandin D2 11-ketoreductase (AKR1C3) in complex with the non-steroidal anti-inflammatory drugs flufenamic acid and indomethacinCrystal structures of prostaglandin D2 11-ketoreductase (AKR1C3) in complex with the non-steroidal anti-inflammatory drugs flufenamic acid and indomethacin
Structural highlights
FunctionAK1C3_HUMAN Catalyzes the conversion of aldehydes and ketones to alcohols. Catalyzes the reduction of prostaglandin (PG) D2, PGH2 and phenanthrenequinone (PQ) and the oxidation of 9-alpha,11-beta-PGF2 to PGD2. Functions as a bi-directional 3-alpha-, 17-beta- and 20-alpha HSD. Can interconvert active androgens, estrogens and progestins with their cognate inactive metabolites. Preferentially transforms androstenedione (4-dione) to testosterone. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedIt is becoming increasingly well established that nonsteroidal anti-inflammatory drugs (NSAID) protect against tumors of the gastrointestinal tract and that they may also protect against a variety of other tumors. These activities have been widely attributed to the inhibition of cylooxygenases (COX) and, in particular, COX-2. However, several observations have indicated that other targets may be involved. Besides targeting COX, certain NSAID also inhibit enzymes belonging to the aldo-keto reductase (AKR) family, including AKR1C3. We have demonstrated previously that overexpression of AKR1C3 acts to suppress cell differentiation and promote proliferation in myeloid cells. However, this enzyme has a broad tissue distribution and therefore represents a novel candidate for the target of the COX-independent antineoplastic actions of NSAID. Here we report on the X-ray crystal structures of AKR1C3 complexed with the NSAID indomethacin (1.8 A resolution) or flufenamic acid (1.7 A resolution). One molecule of indomethacin is bound in the active site, whereas flufenamic acid binds to both the active site and the beta-hairpin loop, at the opposite end of the central beta-barrel. Two other crystal structures (1.20 and 2.1 A resolution) show acetate bound in the active site occupying the proposed oxyanion hole. The data underline AKR1C3 as a COX-independent target for NSAID and will provide a structural basis for the future development of new cancer therapies with reduced COX-dependent side effects. Crystal structures of prostaglandin D(2) 11-ketoreductase (AKR1C3) in complex with the nonsteroidal anti-inflammatory drugs flufenamic acid and indomethacin.,Lovering AL, Ride JP, Bunce CM, Desmond JC, Cummings SM, White SA Cancer Res. 2004 Mar 1;64(5):1802-10. PMID:14996743[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|