1j2j: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1j2j.gif|left|200px]]


<!--
==Crystal structure of GGA1 GAT N-terminal region in complex with ARF1 GTP form==
The line below this paragraph, containing "STRUCTURE_1j2j", creates the "Structure Box" on the page.
<StructureSection load='1j2j' size='340' side='right'caption='[[1j2j]], [[Resolution|resolution]] 1.60&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[1j2j]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1J2J OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1J2J FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.6&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GTP:GUANOSINE-5-TRIPHOSPHATE'>GTP</scene>, <scene name='pdbligand=IOD:IODIDE+ION'>IOD</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
{{STRUCTURE_1j2j| PDB=1j2j  | SCENE= }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1j2j FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1j2j OCA], [https://pdbe.org/1j2j PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1j2j RCSB], [https://www.ebi.ac.uk/pdbsum/1j2j PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1j2j ProSAT]</span></td></tr>
 
</table>
'''Crystal structure of GGA1 GAT N-terminal region in complex with ARF1 GTP form'''
== Function ==
 
[https://www.uniprot.org/uniprot/ARF1_MOUSE ARF1_MOUSE] GTP-binding protein that functions as an allosteric activator of the cholera toxin catalytic subunit, an ADP-ribosyltransferase. Involved in protein trafficking among different compartments. Modulates vesicle budding and uncoating within the Golgi complex. Deactivation induces the redistribution of the entire Golgi complex to the endoplasmic reticulum, suggesting a crucial role in protein trafficking. In its GTP-bound form, its triggers the association with coat proteins with the Golgi membrane. The hydrolysis of ARF1-bound GTP, which is mediated by ARFGAPs proteins, is required for dissociation of coat proteins from Golgi membranes and vesicles.
 
== Evolutionary Conservation ==
==Overview==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/j2/1j2j_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1j2j ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
GGAs are critical for trafficking soluble proteins from the trans-Golgi network (TGN) to endosomes/lysosomes through interactions with TGN-sorting receptors, ADP-ribosylation factor (ARF) and clathrin. ARF-GTP bound to TGN membranes recruits its effector GGA by binding to the GAT domain, thus facilitating recognition of GGA for cargo-loaded receptors. Here we report the X-ray crystal structures of the human GGA1-GAT domain and the complex between ARF1-GTP and the N-terminal region of the GAT domain. When unbound, the GAT domain forms an elongated bundle of three a-helices with a hydrophobic core. Structurally, this domain, combined with the preceding VHS domain, resembles CALM, an AP180 homolog involved in endocytosis. In the complex with ARF1-GTP, a helix-loop-helix of the N-terminal part of GGA1-GAT interacts with the switches 1 and 2 of ARF1 predominantly in a hydrophobic manner. These data reveal a molecular mechanism underlying membrane recruitment of adaptor proteins by ARF-GTP.
GGAs are critical for trafficking soluble proteins from the trans-Golgi network (TGN) to endosomes/lysosomes through interactions with TGN-sorting receptors, ADP-ribosylation factor (ARF) and clathrin. ARF-GTP bound to TGN membranes recruits its effector GGA by binding to the GAT domain, thus facilitating recognition of GGA for cargo-loaded receptors. Here we report the X-ray crystal structures of the human GGA1-GAT domain and the complex between ARF1-GTP and the N-terminal region of the GAT domain. When unbound, the GAT domain forms an elongated bundle of three a-helices with a hydrophobic core. Structurally, this domain, combined with the preceding VHS domain, resembles CALM, an AP180 homolog involved in endocytosis. In the complex with ARF1-GTP, a helix-loop-helix of the N-terminal part of GGA1-GAT interacts with the switches 1 and 2 of ARF1 predominantly in a hydrophobic manner. These data reveal a molecular mechanism underlying membrane recruitment of adaptor proteins by ARF-GTP.


==About this Structure==
Molecular mechanism of membrane recruitment of GGA by ARF in lysosomal protein transport.,Shiba T, Kawasaki M, Takatsu H, Nogi T, Matsugaki N, Igarashi N, Suzuki M, Kato R, Nakayama K, Wakatsuki S Nat Struct Biol. 2003 May;10(5):386-93. PMID:12679809<ref>PMID:12679809</ref>
1J2J is a [[Protein complex]] structure of sequences from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [http://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1J2J OCA].


==Reference==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
Molecular mechanism of membrane recruitment of GGA by ARF in lysosomal protein transport., Shiba T, Kawasaki M, Takatsu H, Nogi T, Matsugaki N, Igarashi N, Suzuki M, Kato R, Nakayama K, Wakatsuki S, Nat Struct Biol. 2003 May;10(5):386-93. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/12679809 12679809]
</div>
<div class="pdbe-citations 1j2j" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Mus musculus]]
[[Category: Mus musculus]]
[[Category: Protein complex]]
[[Category: Igarashi N]]
[[Category: Igarashi, N.]]
[[Category: Kato R]]
[[Category: Kato, R.]]
[[Category: Kawasaki M]]
[[Category: Kawasaki, M.]]
[[Category: Matsugaki N]]
[[Category: Matsugaki, N.]]
[[Category: Nakayama K]]
[[Category: Nakayama, K.]]
[[Category: Nogi T]]
[[Category: Nogi, T.]]
[[Category: Shiba T]]
[[Category: Shiba, T.]]
[[Category: Suzuki M]]
[[Category: Suzuki, M.]]
[[Category: Takatsu H]]
[[Category: Takatsu, H.]]
[[Category: Wakatsuki S]]
[[Category: Wakatsuki, S.]]
[[Category: Protein transport]]
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Fri May  2 20:43:21 2008''

Latest revision as of 10:14, 25 October 2023

Crystal structure of GGA1 GAT N-terminal region in complex with ARF1 GTP formCrystal structure of GGA1 GAT N-terminal region in complex with ARF1 GTP form

Structural highlights

1j2j is a 2 chain structure with sequence from Homo sapiens and Mus musculus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.6Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

ARF1_MOUSE GTP-binding protein that functions as an allosteric activator of the cholera toxin catalytic subunit, an ADP-ribosyltransferase. Involved in protein trafficking among different compartments. Modulates vesicle budding and uncoating within the Golgi complex. Deactivation induces the redistribution of the entire Golgi complex to the endoplasmic reticulum, suggesting a crucial role in protein trafficking. In its GTP-bound form, its triggers the association with coat proteins with the Golgi membrane. The hydrolysis of ARF1-bound GTP, which is mediated by ARFGAPs proteins, is required for dissociation of coat proteins from Golgi membranes and vesicles.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

GGAs are critical for trafficking soluble proteins from the trans-Golgi network (TGN) to endosomes/lysosomes through interactions with TGN-sorting receptors, ADP-ribosylation factor (ARF) and clathrin. ARF-GTP bound to TGN membranes recruits its effector GGA by binding to the GAT domain, thus facilitating recognition of GGA for cargo-loaded receptors. Here we report the X-ray crystal structures of the human GGA1-GAT domain and the complex between ARF1-GTP and the N-terminal region of the GAT domain. When unbound, the GAT domain forms an elongated bundle of three a-helices with a hydrophobic core. Structurally, this domain, combined with the preceding VHS domain, resembles CALM, an AP180 homolog involved in endocytosis. In the complex with ARF1-GTP, a helix-loop-helix of the N-terminal part of GGA1-GAT interacts with the switches 1 and 2 of ARF1 predominantly in a hydrophobic manner. These data reveal a molecular mechanism underlying membrane recruitment of adaptor proteins by ARF-GTP.

Molecular mechanism of membrane recruitment of GGA by ARF in lysosomal protein transport.,Shiba T, Kawasaki M, Takatsu H, Nogi T, Matsugaki N, Igarashi N, Suzuki M, Kato R, Nakayama K, Wakatsuki S Nat Struct Biol. 2003 May;10(5):386-93. PMID:12679809[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Shiba T, Kawasaki M, Takatsu H, Nogi T, Matsugaki N, Igarashi N, Suzuki M, Kato R, Nakayama K, Wakatsuki S. Molecular mechanism of membrane recruitment of GGA by ARF in lysosomal protein transport. Nat Struct Biol. 2003 May;10(5):386-93. PMID:12679809 doi:http://dx.doi.org/10.1038/nsb920

1j2j, resolution 1.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA