1iwq: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1iwq.gif|left|200px]]


{{Structure
==Crystal Structure of MARCKS calmodulin binding domain peptide complexed with Ca2+/Calmodulin==
|PDB= 1iwq |SIZE=350|CAPTION= <scene name='initialview01'>1iwq</scene>, resolution 2.00&Aring;
<StructureSection load='1iwq' size='340' side='right'caption='[[1iwq]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
|SITE=  
== Structural highlights ==
|LIGAND= <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>
<table><tr><td colspan='2'>[[1iwq]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1IWQ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1IWQ FirstGlance]. <br>
|ACTIVITY=  
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2&#8491;</td></tr>
|GENE=  
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene></td></tr>
|DOMAIN=
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1iwq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1iwq OCA], [https://pdbe.org/1iwq PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1iwq RCSB], [https://www.ebi.ac.uk/pdbsum/1iwq PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1iwq ProSAT], [https://www.topsan.org/Proteins/RSGI/1iwq TOPSAN]</span></td></tr>
|RELATEDENTRY=
</table>
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1iwq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1iwq OCA], [http://www.ebi.ac.uk/pdbsum/1iwq PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1iwq RCSB]</span>
== Disease ==
}}
[https://www.uniprot.org/uniprot/CALM1_HUMAN CALM1_HUMAN] The disease is caused by mutations affecting the gene represented in this entry. Mutations in CALM1 are the cause of CPVT4.  The disease is caused by mutations affecting the gene represented in this entry. Mutations in CALM1 are the cause of LQT14.
== Function ==
[https://www.uniprot.org/uniprot/CALM1_HUMAN CALM1_HUMAN] Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis (PubMed:16760425). Mediates calcium-dependent inactivation of CACNA1C (PubMed:26969752). Positively regulates calcium-activated potassium channel activity of KCNN2 (PubMed:27165696).<ref>PMID:16760425</ref> <ref>PMID:23893133</ref> <ref>PMID:26969752</ref> <ref>PMID:27165696</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/iw/1iwq_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1iwq ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The calmodulin-binding domain of myristoylated alanine-rich C kinase substrate (MARCKS), which interacts with various targets including calmodulin, actin and membrane lipids, has been suggested to function as a crosstalk point among several signal transduction pathways. We present here the crystal structure at 2 A resolution of a peptide consisting of the MARCKS calmodulin (CaM)-binding domain in complex with Ca2+-CaM. The domain assumes a flexible conformation, and the hydrophobic pocket of the calmodulin N-lobe, which is a common CaM-binding site observed in previously resolved Ca2+-CaM-target peptide complexes, is not involved in the interaction. The present structure presents a novel target-recognition mode of calmodulin and provides insight into the structural basis of the flexible interaction module of MARCKS.


'''Crystal Structure of MARCKS calmodulin binding domain peptide complexed with Ca2+/Calmodulin'''
Crystal structure of a MARCKS peptide containing the calmodulin-binding domain in complex with Ca2+-calmodulin.,Yamauchi E, Nakatsu T, Matsubara M, Kato H, Taniguchi H Nat Struct Biol. 2003 Mar;10(3):226-31. PMID:12577052<ref>PMID:12577052</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1iwq" style="background-color:#fffaf0;"></div>


==Overview==
==See Also==
The calmodulin-binding domain of myristoylated alanine-rich C kinase substrate (MARCKS), which interacts with various targets including calmodulin, actin and membrane lipids, has been suggested to function as a crosstalk point among several signal transduction pathways. We present here the crystal structure at 2 A resolution of a peptide consisting of the MARCKS calmodulin (CaM)-binding domain in complex with Ca2+-CaM. The domain assumes a flexible conformation, and the hydrophobic pocket of the calmodulin N-lobe, which is a common CaM-binding site observed in previously resolved Ca2+-CaM-target peptide complexes, is not involved in the interaction. The present structure presents a novel target-recognition mode of calmodulin and provides insight into the structural basis of the flexible interaction module of MARCKS.
*[[Calmodulin 3D structures|Calmodulin 3D structures]]
 
== References ==
==About this Structure==
<references/>
1IWQ is a [[Protein complex]] structure of sequences from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1IWQ OCA].
__TOC__
 
</StructureSection>
==Reference==
Crystal structure of a MARCKS peptide containing the calmodulin-binding domain in complex with Ca2+-calmodulin., Yamauchi E, Nakatsu T, Matsubara M, Kato H, Taniguchi H, Nat Struct Biol. 2003 Mar;10(3):226-31. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/12577052 12577052]
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Protein complex]]
[[Category: Large Structures]]
[[Category: Kato, H.]]
[[Category: Mus musculus]]
[[Category: Matsubara, M.]]
[[Category: Kato H]]
[[Category: Nakatsu, T.]]
[[Category: Matsubara M]]
[[Category: RSGI, RIKEN Structural Genomics/Proteomics Initiative.]]
[[Category: Nakatsu T]]
[[Category: Taniguchi, H.]]
[[Category: Taniguchi H]]
[[Category: Yamauchi, E.]]
[[Category: Yamauchi E]]
[[Category: calmodulin-target peptide complex]]
[[Category: riken structural genomics/proteomics initiative]]
[[Category: rsgi]]
[[Category: structural genomic]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 30 21:25:42 2008''

Latest revision as of 10:12, 25 October 2023

Crystal Structure of MARCKS calmodulin binding domain peptide complexed with Ca2+/CalmodulinCrystal Structure of MARCKS calmodulin binding domain peptide complexed with Ca2+/Calmodulin

Structural highlights

1iwq is a 2 chain structure with sequence from Homo sapiens and Mus musculus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT, TOPSAN

Disease

CALM1_HUMAN The disease is caused by mutations affecting the gene represented in this entry. Mutations in CALM1 are the cause of CPVT4. The disease is caused by mutations affecting the gene represented in this entry. Mutations in CALM1 are the cause of LQT14.

Function

CALM1_HUMAN Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis (PubMed:16760425). Mediates calcium-dependent inactivation of CACNA1C (PubMed:26969752). Positively regulates calcium-activated potassium channel activity of KCNN2 (PubMed:27165696).[1] [2] [3] [4]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The calmodulin-binding domain of myristoylated alanine-rich C kinase substrate (MARCKS), which interacts with various targets including calmodulin, actin and membrane lipids, has been suggested to function as a crosstalk point among several signal transduction pathways. We present here the crystal structure at 2 A resolution of a peptide consisting of the MARCKS calmodulin (CaM)-binding domain in complex with Ca2+-CaM. The domain assumes a flexible conformation, and the hydrophobic pocket of the calmodulin N-lobe, which is a common CaM-binding site observed in previously resolved Ca2+-CaM-target peptide complexes, is not involved in the interaction. The present structure presents a novel target-recognition mode of calmodulin and provides insight into the structural basis of the flexible interaction module of MARCKS.

Crystal structure of a MARCKS peptide containing the calmodulin-binding domain in complex with Ca2+-calmodulin.,Yamauchi E, Nakatsu T, Matsubara M, Kato H, Taniguchi H Nat Struct Biol. 2003 Mar;10(3):226-31. PMID:12577052[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Tsang WY, Spektor A, Luciano DJ, Indjeian VB, Chen Z, Salisbury JL, Sanchez I, Dynlacht BD. CP110 cooperates with two calcium-binding proteins to regulate cytokinesis and genome stability. Mol Biol Cell. 2006 Aug;17(8):3423-34. Epub 2006 Jun 7. PMID:16760425 doi:10.1091/mbc.E06-04-0371
  2. Reichow SL, Clemens DM, Freites JA, Nemeth-Cahalan KL, Heyden M, Tobias DJ, Hall JE, Gonen T. Allosteric mechanism of water-channel gating by Ca-calmodulin. Nat Struct Mol Biol. 2013 Jul 28. doi: 10.1038/nsmb.2630. PMID:23893133 doi:10.1038/nsmb.2630
  3. Boczek NJ, Gomez-Hurtado N, Ye D, Calvert ML, Tester DJ, Kryshtal D, Hwang HS, Johnson CN, Chazin WJ, Loporcaro CG, Shah M, Papez AL, Lau YR, Kanter R, Knollmann BC, Ackerman MJ. Spectrum and Prevalence of CALM1-, CALM2-, and CALM3-Encoded Calmodulin Variants in Long QT Syndrome and Functional Characterization of a Novel Long QT Syndrome-Associated Calmodulin Missense Variant, E141G. Circ Cardiovasc Genet. 2016 Apr;9(2):136-146. doi:, 10.1161/CIRCGENETICS.115.001323. Epub 2016 Mar 11. PMID:26969752 doi:http://dx.doi.org/10.1161/CIRCGENETICS.115.001323
  4. Yu CC, Ko JS, Ai T, Tsai WC, Chen Z, Rubart M, Vatta M, Everett TH 4th, George AL Jr, Chen PS. Arrhythmogenic calmodulin mutations impede activation of small-conductance calcium-activated potassium current. Heart Rhythm. 2016 Aug;13(8):1716-23. doi: 10.1016/j.hrthm.2016.05.009. Epub 2016, May 7. PMID:27165696 doi:http://dx.doi.org/10.1016/j.hrthm.2016.05.009
  5. Yamauchi E, Nakatsu T, Matsubara M, Kato H, Taniguchi H. Crystal structure of a MARCKS peptide containing the calmodulin-binding domain in complex with Ca2+-calmodulin. Nat Struct Biol. 2003 Mar;10(3):226-31. PMID:12577052 doi:10.1038/nsb900

1iwq, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA