7r9c: Difference between revisions
m Protected "7r9c" [edit=sysop:move=sysop] |
No edit summary |
||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Cocrystal of BRD4(D1) with N,N-dimethyl-2-[(3R)-3-(5-{2-[2-methyl-5-(propan-2-yl)phenoxy]pyrimidin-4-yl}-4-[4-(trifluoromethyl)phenyl]-1H-imidazol-1-yl)pyrrolidin-1-yl]ethan-1-amine== | |||
<StructureSection load='7r9c' size='340' side='right'caption='[[7r9c]], [[Resolution|resolution]] 1.50Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[7r9c]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7R9C OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7R9C FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.5Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=2IR:N,N-dimethyl-2-[(3R)-3-(5-{2-[2-methyl-5-(propan-2-yl)phenoxy]pyrimidin-4-yl}-4-[4-(trifluoromethyl)phenyl]-1H-imidazol-1-yl)pyrrolidin-1-yl]ethan-1-amine'>2IR</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7r9c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7r9c OCA], [https://pdbe.org/7r9c PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7r9c RCSB], [https://www.ebi.ac.uk/pdbsum/7r9c PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7r9c ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/BRD4_HUMAN BRD4_HUMAN] Note=A chromosomal aberration involving BRD4 is found in a rare, aggressive, and lethal carcinoma arising in midline organs of young people. Translocation t(15;19)(q14;p13) with NUT which produces a BRD4-NUT fusion protein.<ref>PMID:12543779</ref> <ref>PMID:11733348</ref> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/BRD4_HUMAN BRD4_HUMAN] Plays a role in a process governing chromosomal dynamics during mitosis (By similarity). | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Chemical probes for epigenetic proteins are essential tools for dissecting the molecular mechanisms for gene regulation and therapeutic development. The bromodomain and extra-terminal (BET) proteins are master transcriptional regulators. Despite promising therapeutic targets, selective small molecule inhibitors for a single bromodomain remain an unmet goal due to their high sequence similarity. Here, we address this challenge via a structure-activity relationship study using 1,4,5-trisubstituted imidazoles against the BRD4 N-terminal bromodomain (D1). Leading compounds 26 and 30 have 15 and 18 nM affinity against BRD4 D1 and over 500-fold selectivity against BRD2 D1 and BRD4 D2 via ITC. Broader BET selectivity was confirmed by fluorescence anisotropy, thermal shift, and CETSA. Despite BRD4 engagement, BRD4 D1 inhibition was unable to reduce c-Myc expression at low concentration in multiple myeloma cells. Conversely, for inflammation, IL-8 and chemokine downregulation were observed. These results provide new design rules for selective inhibitors of an individual BET bromodomain. | |||
A Structure-based Design Approach for Generating High Affinity BRD4 D1-Selective Chemical Probes.,Cui H, Divakaran A, Hoell ZJ, Ellingson MO, Scholtz CR, Zahid H, Johnson JA, Griffith EC, Gee CT, Lee AL, Khanal S, Shi K, Aihara H, Shah VH, Lee RE, Harki DA, Pomerantz WCK J Med Chem. 2022 Jan 10. doi: 10.1021/acs.jmedchem.1c01779. PMID:35007061<ref>PMID:35007061</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
<div class="pdbe-citations 7r9c" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Bromodomain-containing protein 3D structures|Bromodomain-containing protein 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | |||
[[Category: Aihara H]] | |||
[[Category: Cui H]] | |||
[[Category: Pomerantz WCK]] | |||
[[Category: Shi K]] |
Latest revision as of 19:27, 18 October 2023
Cocrystal of BRD4(D1) with N,N-dimethyl-2-[(3R)-3-(5-{2-[2-methyl-5-(propan-2-yl)phenoxy]pyrimidin-4-yl}-4-[4-(trifluoromethyl)phenyl]-1H-imidazol-1-yl)pyrrolidin-1-yl]ethan-1-amineCocrystal of BRD4(D1) with N,N-dimethyl-2-[(3R)-3-(5-{2-[2-methyl-5-(propan-2-yl)phenoxy]pyrimidin-4-yl}-4-[4-(trifluoromethyl)phenyl]-1H-imidazol-1-yl)pyrrolidin-1-yl]ethan-1-amine
Structural highlights
DiseaseBRD4_HUMAN Note=A chromosomal aberration involving BRD4 is found in a rare, aggressive, and lethal carcinoma arising in midline organs of young people. Translocation t(15;19)(q14;p13) with NUT which produces a BRD4-NUT fusion protein.[1] [2] FunctionBRD4_HUMAN Plays a role in a process governing chromosomal dynamics during mitosis (By similarity). Publication Abstract from PubMedChemical probes for epigenetic proteins are essential tools for dissecting the molecular mechanisms for gene regulation and therapeutic development. The bromodomain and extra-terminal (BET) proteins are master transcriptional regulators. Despite promising therapeutic targets, selective small molecule inhibitors for a single bromodomain remain an unmet goal due to their high sequence similarity. Here, we address this challenge via a structure-activity relationship study using 1,4,5-trisubstituted imidazoles against the BRD4 N-terminal bromodomain (D1). Leading compounds 26 and 30 have 15 and 18 nM affinity against BRD4 D1 and over 500-fold selectivity against BRD2 D1 and BRD4 D2 via ITC. Broader BET selectivity was confirmed by fluorescence anisotropy, thermal shift, and CETSA. Despite BRD4 engagement, BRD4 D1 inhibition was unable to reduce c-Myc expression at low concentration in multiple myeloma cells. Conversely, for inflammation, IL-8 and chemokine downregulation were observed. These results provide new design rules for selective inhibitors of an individual BET bromodomain. A Structure-based Design Approach for Generating High Affinity BRD4 D1-Selective Chemical Probes.,Cui H, Divakaran A, Hoell ZJ, Ellingson MO, Scholtz CR, Zahid H, Johnson JA, Griffith EC, Gee CT, Lee AL, Khanal S, Shi K, Aihara H, Shah VH, Lee RE, Harki DA, Pomerantz WCK J Med Chem. 2022 Jan 10. doi: 10.1021/acs.jmedchem.1c01779. PMID:35007061[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|