7lnh: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
m Protected "7lnh" [edit=sysop:move=sysop]
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Unreleased structure'''


The entry 7lnh is ON HOLD  until sometime in the future
==S-adenosylmethionine synthetase co-crystallized with UppNHp==
<StructureSection load='7lnh' size='340' side='right'caption='[[7lnh]], [[Resolution|resolution]] 2.50&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[7lnh]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7LNH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7LNH FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.5&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=YQP:(2~{S})-2-azanyl-4-[[(2~{S},3~{S},4~{R},5~{R})-5-[2,4-bis(oxidanylidene)pyrimidin-1-yl]-3,4-bis(oxidanyl)oxolan-2-yl]methyl-methyl-$l^{3}-sulfanyl]butanoic+acid'>YQP</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7lnh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7lnh OCA], [https://pdbe.org/7lnh PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7lnh RCSB], [https://www.ebi.ac.uk/pdbsum/7lnh PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7lnh ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/METK2_HUMAN METK2_HUMAN] Catalyzes the formation of S-adenosylmethionine from methionine and ATP.
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Protein conformational changes can facilitate the binding of noncognate substrates and underlying promiscuous activities. However, the contribution of substrate conformational dynamics to this process is comparatively poorly understood. Here, we analyze human (hMAT2A) and Escherichia coli (eMAT) methionine adenosyltransferases that have identical active sites but different substrate specificity. In the promiscuous hMAT2A, noncognate substrates bind in a stable conformation to allow catalysis. In contrast, noncognate substrates sample stable productive binding modes less frequently in eMAT owing to altered mobility in the enzyme active site. Different cellular concentrations of substrates likely drove the evolutionary divergence of substrate specificity in these orthologues. The observation of catalytic promiscuity in hMAT2A led to the detection of a new human metabolite, methyl thioguanosine, that is produced at elevated levels in a cancer cell line. This work establishes that identical active sites can result in different substrate specificity owing to the effects of substrate and enzyme dynamics.


Authors: Tan, L.L., Jackson, C.J.
Substrate Dynamics Contribute to Enzymatic Specificity in Human and Bacterial Methionine Adenosyltransferases.,Gade M, Tan LL, Damry AM, Sandhu M, Brock JS, Delaney A, Villar-Briones A, Jackson CJ, Laurino P JACS Au. 2021 Nov 19;1(12):2349-2360. doi: 10.1021/jacsau.1c00464. eCollection, 2021 Dec 27. PMID:34977903<ref>PMID:34977903</ref>


Description: S-adenosylmethionine synthetase co-crystallized with UppNHp
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[Category: Unreleased Structures]]
</div>
[[Category: Jackson, C.J]]
<div class="pdbe-citations 7lnh" style="background-color:#fffaf0;"></div>
[[Category: Tan, L.L]]
 
==See Also==
*[[S-adenosylmethionine synthetase 3D structures|S-adenosylmethionine synthetase 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Jackson CJ]]
[[Category: Tan LL]]

Latest revision as of 18:54, 18 October 2023

S-adenosylmethionine synthetase co-crystallized with UppNHpS-adenosylmethionine synthetase co-crystallized with UppNHp

Structural highlights

7lnh is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.5Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

METK2_HUMAN Catalyzes the formation of S-adenosylmethionine from methionine and ATP.

Publication Abstract from PubMed

Protein conformational changes can facilitate the binding of noncognate substrates and underlying promiscuous activities. However, the contribution of substrate conformational dynamics to this process is comparatively poorly understood. Here, we analyze human (hMAT2A) and Escherichia coli (eMAT) methionine adenosyltransferases that have identical active sites but different substrate specificity. In the promiscuous hMAT2A, noncognate substrates bind in a stable conformation to allow catalysis. In contrast, noncognate substrates sample stable productive binding modes less frequently in eMAT owing to altered mobility in the enzyme active site. Different cellular concentrations of substrates likely drove the evolutionary divergence of substrate specificity in these orthologues. The observation of catalytic promiscuity in hMAT2A led to the detection of a new human metabolite, methyl thioguanosine, that is produced at elevated levels in a cancer cell line. This work establishes that identical active sites can result in different substrate specificity owing to the effects of substrate and enzyme dynamics.

Substrate Dynamics Contribute to Enzymatic Specificity in Human and Bacterial Methionine Adenosyltransferases.,Gade M, Tan LL, Damry AM, Sandhu M, Brock JS, Delaney A, Villar-Briones A, Jackson CJ, Laurino P JACS Au. 2021 Nov 19;1(12):2349-2360. doi: 10.1021/jacsau.1c00464. eCollection, 2021 Dec 27. PMID:34977903[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Gade M, Tan LL, Damry AM, Sandhu M, Brock JS, Delaney A, Villar-Briones A, Jackson CJ, Laurino P. Substrate Dynamics Contribute to Enzymatic Specificity in Human and Bacterial Methionine Adenosyltransferases. JACS Au. 2021 Nov 19;1(12):2349-2360. doi: 10.1021/jacsau.1c00464. eCollection, 2021 Dec 27. PMID:34977903 doi:http://dx.doi.org/10.1021/jacsau.1c00464

7lnh, resolution 2.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA