7k4x: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='7k4x' size='340' side='right'caption='[[7k4x]], [[Resolution|resolution]] 1.60Å' scene=''> | <StructureSection load='7k4x' size='340' side='right'caption='[[7k4x]], [[Resolution|resolution]] 1.60Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[7k4x]] is a 2 chain structure with sequence from [ | <table><tr><td colspan='2'>[[7k4x]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermoascus_aurantiacus Thermoascus aurantiacus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7K4X OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7K4X FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.6Å</td></tr> | ||
<tr id=' | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=6NT:6-NITROBENZOTRIAZOLE'>6NT</scene>, <scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | ||
< | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7k4x FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7k4x OCA], [https://pdbe.org/7k4x PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7k4x RCSB], [https://www.ebi.ac.uk/pdbsum/7k4x PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7k4x ProSAT]</span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Function == | |||
[https://www.uniprot.org/uniprot/XYNA_THEAU XYNA_THEAU] | |||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 18: | Line 19: | ||
</div> | </div> | ||
<div class="pdbe-citations 7k4x" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 7k4x" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Kemp eliminase|Kemp eliminase]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: | [[Category: Thermoascus aurantiacus]] | ||
[[Category: Bunzel | [[Category: Bunzel A]] | ||
[[Category: Cohen | [[Category: Cohen AE]] | ||
[[Category: Hilvert | [[Category: Hilvert D]] | ||
[[Category: Kern | [[Category: Kern D]] | ||
[[Category: Nguyen | [[Category: Nguyen V]] | ||
[[Category: Otten | [[Category: Otten R]] | ||
[[Category: Padua | [[Category: Padua RAP]] | ||
[[Category: Patterson | [[Category: Patterson M]] | ||
[[Category: Perry | [[Category: Perry SL]] | ||
[[Category: Pitsawong | [[Category: Pitsawong W]] | ||
[[Category: Sui | [[Category: Sui S]] | ||
Latest revision as of 18:17, 18 October 2023
Crystal structure of Kemp Eliminase HG3.7 in complex with the transition state analog 6-nitrobenzotriazoleCrystal structure of Kemp Eliminase HG3.7 in complex with the transition state analog 6-nitrobenzotriazole
Structural highlights
FunctionPublication Abstract from PubMedThe advent of biocatalysts designed computationally and optimized by laboratory evolution provides an opportunity to explore molecular strategies for augmenting catalytic function. Applying a suite of nuclear magnetic resonance, crystallography, and stopped-flow techniques to an enzyme designed for an elementary proton transfer reaction, we show how directed evolution gradually altered the conformational ensemble of the protein scaffold to populate a narrow, highly active conformational ensemble and accelerate this transformation by nearly nine orders of magnitude. Mutations acquired during optimization enabled global conformational changes, including high-energy backbone rearrangements, that cooperatively organized the catalytic base and oxyanion stabilizer, thus perfecting transition-state stabilization. The development of protein catalysts for many chemical transformations could be facilitated by explicitly sampling conformational substates during design and specifically stabilizing productive substates over all unproductive conformations. How directed evolution reshapes the energy landscape in an enzyme to boost catalysis.,Otten R, Padua RAP, Bunzel HA, Nguyen V, Pitsawong W, Patterson M, Sui S, Perry SL, Cohen AE, Hilvert D, Kern D Science. 2020 Dec 18;370(6523):1442-1446. doi: 10.1126/science.abd3623. Epub 2020, Nov 19. PMID:33214289[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|