6x9c: Difference between revisions

New page: '''Unreleased structure''' The entry 6x9c is ON HOLD until Paper Publication Authors: Description: Category: Unreleased Structures
 
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Unreleased structure'''


The entry 6x9c is ON HOLD  until Paper Publication
==Structure of proline utilization A with L-proline bound in the L-glutamate-gamma-semialdehyde dehydrogenase active site==
<StructureSection load='6x9c' size='340' side='right'caption='[[6x9c]], [[Resolution|resolution]] 1.44&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[6x9c]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Sinorhizobium_meliloti_SM11 Sinorhizobium meliloti SM11]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6X9C OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6X9C FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.44&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FDA:DIHYDROFLAVINE-ADENINE+DINUCLEOTIDE'>FDA</scene>, <scene name='pdbligand=FMT:FORMIC+ACID'>FMT</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NAI:1,4-DIHYDRONICOTINAMIDE+ADENINE+DINUCLEOTIDE'>NAI</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=PGE:TRIETHYLENE+GLYCOL'>PGE</scene>, <scene name='pdbligand=PRO:PROLINE'>PRO</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6x9c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6x9c OCA], [https://pdbe.org/6x9c PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6x9c RCSB], [https://www.ebi.ac.uk/pdbsum/6x9c PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6x9c ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/F7X6I3_SINMM F7X6I3_SINMM] Oxidizes proline to glutamate for use as a carbon and nitrogen source.[PIRNR:PIRNR000197]
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Proline utilization A (PutA) proteins are bifunctional proline catabolic enzymes that catalyze the 4-electron oxidation of l-proline to l-glutamate using spatially-separated proline dehydrogenase and l-glutamate-gamma-semialdehyde dehydrogenase (GSALDH, a.k.a. ALDH4A1) active sites. The observation that l-proline inhibits both the GSALDH activity of PutA and monofunctional GSALDHs motivated us to study the inhibition of PutA by proline stereoisomers and analogs. Here we report five high-resolution crystal structures of PutA with the following ligands bound in the GSALDH active site: d-proline, trans-4-hydroxy-d-proline, cis-4-hydroxy-d-proline, l-proline, and trans-4-hydroxy-l-proline. Three of the structures are of ternary complexes of the enzyme with an inhibitor and either NAD(+) or NADH. To our knowledge, the NADH complex is the first for any GSALDH. The structures reveal a conserved mode of recognition of the inhibitor carboxylate, which results in the pyrrolidine rings of the d- and l-isomers having different orientations and different hydrogen bonding environments. Activity assays show that the compounds are weak inhibitors with millimolar inhibition constants. Curiously, although the inhibitors occupy the aldehyde binding site, kinetic measurements show the inhibition is uncompetitive. Uncompetitive inhibition may involve proline binding to a remote site or to the enzyme-NADH complex. Together, the structural and kinetic data expand our understanding of how proline-like molecules interact with GSALDH, reveal insight into the relationship between stereochemistry and inhibitor affinity, and demonstrate the pitfalls of inferring the mechanism of inhibition from crystal structures alone.


Authors:  
Structural analysis of prolines and hydroxyprolines binding to the l-glutamate-gamma-semialdehyde dehydrogenase active site of bifunctional proline utilization A.,Campbell AC, Bogner AN, Mao Y, Becker DF, Tanner JJ Arch Biochem Biophys. 2020 Dec 18;698:108727. doi: 10.1016/j.abb.2020.108727. PMID:33333077<ref>PMID:33333077</ref>


Description:  
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[Category: Unreleased Structures]]
</div>
<div class="pdbe-citations 6x9c" style="background-color:#fffaf0;"></div>
 
==See Also==
*[[Proline utilization A|Proline utilization A]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Large Structures]]
[[Category: Sinorhizobium meliloti SM11]]
[[Category: Campbell AC]]
[[Category: Tanner JJ]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA