6nfi: Difference between revisions
No edit summary |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The | ==BTK in complex with inhibitor N-(3-{[(2,6-dimethylphenyl)methyl]amino}-7-methoxyindeno[1,2-c]pyrazol-6-yl)methanesulfonamide== | ||
<StructureSection load='6nfi' size='340' side='right'caption='[[6nfi]], [[Resolution|resolution]] 2.41Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[6nfi]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6NFI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6NFI FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.41Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=KLP:N-(3-{[(2,6-dimethylphenyl)methyl]amino}-7-methoxyindeno[1,2-c]pyrazol-6-yl)methanesulfonamide'>KLP</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6nfi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6nfi OCA], [https://pdbe.org/6nfi PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6nfi RCSB], [https://www.ebi.ac.uk/pdbsum/6nfi PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6nfi ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/BTK_HUMAN BTK_HUMAN] Defects in BTK are the cause of X-linked agammaglobulinemia (XLA) [MIM:[https://omim.org/entry/300755 300755]; also known as X-linked agammaglobulinemia type 1 (AGMX1) or immunodeficiency type 1 (IMD1). XLA is a humoral immunodeficiency disease which results in developmental defects in the maturation pathway of B-cells. Affected boys have normal levels of pre-B-cells in their bone marrow but virtually no circulating mature B-lymphocytes. This results in a lack of immunoglobulins of all classes and leads to recurrent bacterial infections like otitis, conjunctivitis, dermatitis, sinusitis in the first few years of life, or even some patients present overwhelming sepsis or meningitis, resulting in death in a few hours. Treatment in most cases is by infusion of intravenous immunoglobulin.<ref>PMID:7880320</ref> <ref>PMID:8013627</ref> <ref>PMID:8162056</ref> <ref>PMID:8162018</ref> <ref>PMID:7849697</ref> <ref>PMID:7849721</ref> <ref>PMID:7809124</ref> <ref>PMID:7849006</ref> <ref>PMID:7711734</ref> <ref>PMID:7633420</ref> <ref>PMID:7633429</ref> <ref>PMID:8634718</ref> <ref>PMID:7627183</ref> <ref>PMID:7897635</ref> <ref>PMID:8723128</ref> <ref>PMID:8695804</ref> <ref>PMID:8834236</ref> <ref>PMID:9280283</ref> <ref>PMID:9260159</ref> <ref>PMID:9545398</ref> <ref>PMID:9445504</ref> <ref>PMID:10220140</ref> <ref>PMID:10678660</ref> <ref>PMID:10612838</ref> Defects in BTK may be the cause of X-linked hypogammaglobulinemia and isolated growth hormone deficiency (XLA-IGHD) [MIM:[https://omim.org/entry/307200 307200]; also known as agammaglobulinemia and isolated growth hormone deficiency or Fleisher syndrome or isolated growth hormone deficiency type 3 (IGHD3). In rare cases XLA is inherited together with isolated growth hormone deficiency (IGHD). | |||
== Function == | |||
[https://www.uniprot.org/uniprot/BTK_HUMAN BTK_HUMAN] Non-receptor tyrosine kinase indispensable for B lymphocyte development, differentiation and signaling. Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation. After BCR engagement and activation at the plasma membrane, phosphorylates PLCG2 at several sites, igniting the downstream signaling pathway through calcium mobilization, followed by activation of the protein kinase C (PKC) family members. PLCG2 phosphorylation is performed in close cooperation with the adapter protein B-cell linker protein BLNK. BTK acts as a platform to bring together a diverse array of signaling proteins and is implicated in cytokine receptor signaling pathways. Plays an important role in the function of immune cells of innate as well as adaptive immunity, as a component of the Toll-like receptors (TLR) pathway. The TLR pathway acts as a primary surveillance system for the detection of pathogens and are crucial to the activation of host defense. Especially, is a critical molecule in regulating TLR9 activation in splenic B-cells. Within the TLR pathway, induces tyrosine phosphorylation of TIRAP which leads to TIRAP degradation. BTK plays also a critical role in transcription regulation. Induces the activity of NF-kappa-B, which is involved in regulating the expression of hundreds of genes. BTK is involved on the signaling pathway linking TLR8 and TLR9 to NF-kappa-B. Transiently phosphorylates transcription factor GTF2I on tyrosine residues in response to BCR. GTF2I then translocates to the nucleus to bind regulatory enhancer elements to modulate gene expression. ARID3A and NFAT are other transcriptional target of BTK. BTK is required for the formation of functional ARID3A DNA-binding complexes. There is however no evidence that BTK itself binds directly to DNA. BTK has a dual role in the regulation of apoptosis.<ref>PMID:9012831</ref> <ref>PMID:11606584</ref> <ref>PMID:16517732</ref> <ref>PMID:16738337</ref> <ref>PMID:16415872</ref> <ref>PMID:17932028</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
At the onset of a drug discovery program, the goal is to identify novel compounds with appropriate chemical features that can be taken forward as lead series. Here, we describe three prospective case studies, Bruton Tyrosine Kinase (BTK), RAR-Related Orphan Receptor gamma t (RORgammat) and Human Leukocyte Antigen DR isotype (HLA-DR) to illustrate the positive impact of high throughput virtual screening (HTVS) on the successful identification of novel chemical series. Each case represents a project with a varying degree of difficulty due to the amount of structural and ligand information available internally or in the public domain to utilize in the virtual screens. We show that HTVS can be effectively employed to identify a diverse set of potent hits for each protein system even when the gold standard, high resolution structural data or ligand binding data for benchmarking is not available. | |||
Accelerating Lead Identification by High Throughput Virtual Screening: Prospective Case Studies from the Pharmaceutical Industry.,Damm-Ganamet KL, Arora N, Becart S, Edwards JP, Lebsack AD, McAllister H, Nelen MI, Rao N, Westover L, Wiener JJM, Mirzadegan T J Chem Inf Model. 2019 Feb 28. doi: 10.1021/acs.jcim.8b00941. PMID:30817167<ref>PMID:30817167</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
<div class="pdbe-citations 6nfi" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Tyrosine kinase 3D structures|Tyrosine kinase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | |||
[[Category: Damm-Ganamet KL]] | |||
[[Category: Mirzadegan T]] |
Latest revision as of 09:52, 11 October 2023
BTK in complex with inhibitor N-(3-{[(2,6-dimethylphenyl)methyl]amino}-7-methoxyindeno[1,2-c]pyrazol-6-yl)methanesulfonamideBTK in complex with inhibitor N-(3-{[(2,6-dimethylphenyl)methyl]amino}-7-methoxyindeno[1,2-c]pyrazol-6-yl)methanesulfonamide
Structural highlights
DiseaseBTK_HUMAN Defects in BTK are the cause of X-linked agammaglobulinemia (XLA) [MIM:300755; also known as X-linked agammaglobulinemia type 1 (AGMX1) or immunodeficiency type 1 (IMD1). XLA is a humoral immunodeficiency disease which results in developmental defects in the maturation pathway of B-cells. Affected boys have normal levels of pre-B-cells in their bone marrow but virtually no circulating mature B-lymphocytes. This results in a lack of immunoglobulins of all classes and leads to recurrent bacterial infections like otitis, conjunctivitis, dermatitis, sinusitis in the first few years of life, or even some patients present overwhelming sepsis or meningitis, resulting in death in a few hours. Treatment in most cases is by infusion of intravenous immunoglobulin.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] Defects in BTK may be the cause of X-linked hypogammaglobulinemia and isolated growth hormone deficiency (XLA-IGHD) [MIM:307200; also known as agammaglobulinemia and isolated growth hormone deficiency or Fleisher syndrome or isolated growth hormone deficiency type 3 (IGHD3). In rare cases XLA is inherited together with isolated growth hormone deficiency (IGHD). FunctionBTK_HUMAN Non-receptor tyrosine kinase indispensable for B lymphocyte development, differentiation and signaling. Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation. After BCR engagement and activation at the plasma membrane, phosphorylates PLCG2 at several sites, igniting the downstream signaling pathway through calcium mobilization, followed by activation of the protein kinase C (PKC) family members. PLCG2 phosphorylation is performed in close cooperation with the adapter protein B-cell linker protein BLNK. BTK acts as a platform to bring together a diverse array of signaling proteins and is implicated in cytokine receptor signaling pathways. Plays an important role in the function of immune cells of innate as well as adaptive immunity, as a component of the Toll-like receptors (TLR) pathway. The TLR pathway acts as a primary surveillance system for the detection of pathogens and are crucial to the activation of host defense. Especially, is a critical molecule in regulating TLR9 activation in splenic B-cells. Within the TLR pathway, induces tyrosine phosphorylation of TIRAP which leads to TIRAP degradation. BTK plays also a critical role in transcription regulation. Induces the activity of NF-kappa-B, which is involved in regulating the expression of hundreds of genes. BTK is involved on the signaling pathway linking TLR8 and TLR9 to NF-kappa-B. Transiently phosphorylates transcription factor GTF2I on tyrosine residues in response to BCR. GTF2I then translocates to the nucleus to bind regulatory enhancer elements to modulate gene expression. ARID3A and NFAT are other transcriptional target of BTK. BTK is required for the formation of functional ARID3A DNA-binding complexes. There is however no evidence that BTK itself binds directly to DNA. BTK has a dual role in the regulation of apoptosis.[25] [26] [27] [28] [29] [30] Publication Abstract from PubMedAt the onset of a drug discovery program, the goal is to identify novel compounds with appropriate chemical features that can be taken forward as lead series. Here, we describe three prospective case studies, Bruton Tyrosine Kinase (BTK), RAR-Related Orphan Receptor gamma t (RORgammat) and Human Leukocyte Antigen DR isotype (HLA-DR) to illustrate the positive impact of high throughput virtual screening (HTVS) on the successful identification of novel chemical series. Each case represents a project with a varying degree of difficulty due to the amount of structural and ligand information available internally or in the public domain to utilize in the virtual screens. We show that HTVS can be effectively employed to identify a diverse set of potent hits for each protein system even when the gold standard, high resolution structural data or ligand binding data for benchmarking is not available. Accelerating Lead Identification by High Throughput Virtual Screening: Prospective Case Studies from the Pharmaceutical Industry.,Damm-Ganamet KL, Arora N, Becart S, Edwards JP, Lebsack AD, McAllister H, Nelen MI, Rao N, Westover L, Wiener JJM, Mirzadegan T J Chem Inf Model. 2019 Feb 28. doi: 10.1021/acs.jcim.8b00941. PMID:30817167[31] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|