6mgq: Difference between revisions

No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:


==ER aminopeptidase 1 bound to 10mer phosphinic inhibitor DG014==
==ERAP1 in the open conformation bound to 10mer phosphinic inhibitor DG014==
<StructureSection load='6mgq' size='340' side='right'caption='[[6mgq]], [[Resolution|resolution]] 2.92&Aring;' scene=''>
<StructureSection load='6mgq' size='340' side='right'caption='[[6mgq]], [[Resolution|resolution]] 2.92&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[6mgq]] is a 6 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6MGQ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6MGQ FirstGlance]. <br>
<table><tr><td colspan='2'>[[6mgq]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6MGQ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6MGQ FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.92&#8491;</td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=2X0:[(1R)-1-AMINO-3-PHENYLPROPYL]PHOSPHONIC+ACID'>2X0</scene>, <scene name='pdbligand=7GA:2,4-DIMETHYLPENTANAL'>7GA</scene></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=2X0:[(1R)-1-AMINO-3-PHENYLPROPYL]PHOSPHONIC+ACID'>2X0</scene>, <scene name='pdbligand=7GA:2,4-DIMETHYLPENTANAL'>7GA</scene>, <scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=UNX:UNKNOWN+ATOM+OR+ION'>UNX</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6mgq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6mgq OCA], [http://pdbe.org/6mgq PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6mgq RCSB], [http://www.ebi.ac.uk/pdbsum/6mgq PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6mgq ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6mgq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6mgq OCA], [https://pdbe.org/6mgq PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6mgq RCSB], [https://www.ebi.ac.uk/pdbsum/6mgq PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6mgq ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/ERAP1_HUMAN ERAP1_HUMAN]] Aminopeptidase that plays a central role in peptide trimming, a step required for the generation of most HLA class I-binding peptides. Peptide trimming is essential to customize longer precursor peptides to fit them to the correct length required for presentation on MHC class I molecules. Strongly prefers substrates 9-16 residues long. Rapidly degrades 13-mer to a 9-mer and then stops. Preferentially hydrolyzes the residue Leu and peptides with a hydrophobic C-terminus, while it has weak activity toward peptides with charged C-terminus. May play a role in the inactivation of peptide hormones. May be involved in the regulation of blood pressure through the inactivation of angiotensin II and/or the generation of bradykinin in the kidney.<ref>PMID:15908954</ref> <ref>PMID:16286653</ref> <ref>PMID:21478864</ref>
[https://www.uniprot.org/uniprot/ERAP1_HUMAN ERAP1_HUMAN] Aminopeptidase that plays a central role in peptide trimming, a step required for the generation of most HLA class I-binding peptides. Peptide trimming is essential to customize longer precursor peptides to fit them to the correct length required for presentation on MHC class I molecules. Strongly prefers substrates 9-16 residues long. Rapidly degrades 13-mer to a 9-mer and then stops. Preferentially hydrolyzes the residue Leu and peptides with a hydrophobic C-terminus, while it has weak activity toward peptides with charged C-terminus. May play a role in the inactivation of peptide hormones. May be involved in the regulation of blood pressure through the inactivation of angiotensin II and/or the generation of bradykinin in the kidney.<ref>PMID:15908954</ref> <ref>PMID:16286653</ref> <ref>PMID:21478864</ref>  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The endoplasmic-reticulum aminopeptidase ERAP1 processes antigenic peptides for loading on MHC-I proteins and recognition by CD8 T cells as they survey the body for infection and malignancy. Crystal structures have revealed ERAP1 in either open or closed conformations, but whether these occur in solution and are involved in catalysis is not clear. Here, we assess ERAP1 conformational states in solution in the presence of substrates, allosteric activators, and inhibitors by small-angle X-ray scattering. We also characterize changes in protein conformation by X-ray crystallography, and we localize alternate C-terminal binding sites by chemical crosslinking. Structural and enzymatic data suggest that the structural reconfigurations of ERAP1 active site are physically linked to domain closure and are promoted by binding of long peptide substrates. These results clarify steps required for ERAP1 catalysis, demonstrate the importance of conformational dynamics within the catalytic cycle, and provide a mechanism for the observed allosteric regulation and Lys/Arg528 polymorphism disease association.
 
Conformational dynamics linked to domain closure and substrate binding explain the ERAP1 allosteric regulation mechanism.,Maben Z, Arya R, Georgiadis D, Stratikos E, Stern LJ Nat Commun. 2021 Sep 6;12(1):5302. doi: 10.1038/s41467-021-25564-w. PMID:34489420<ref>PMID:34489420</ref>
 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 6mgq" style="background-color:#fffaf0;"></div>
 
==See Also==
*[[Aminopeptidase 3D structures|Aminopeptidase 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Maben, Z]]
[[Category: Synthetic construct]]
[[Category: Stern, L J]]
[[Category: Maben Z]]
[[Category: Aminopeptidase]]
[[Category: Stern LJ]]
[[Category: Hydrolase]]
[[Category: Hydrolase-inhibitor complex]]
[[Category: Immune system]]
[[Category: Inhibitor]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA