6cq5: Difference between revisions
No edit summary |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==TBK1 in Complex with Sulfone Analog of Amlexanox== | ==TBK1 in Complex with Sulfone Analog of Amlexanox== | ||
<StructureSection load='6cq5' size='340' side='right' caption='[[6cq5]], [[Resolution|resolution]] 3.35Å' scene=''> | <StructureSection load='6cq5' size='340' side='right'caption='[[6cq5]], [[Resolution|resolution]] 3.35Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[6cq5]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6CQ5 OCA]. For a <b>guided tour on the structure components</b> use [ | <table><tr><td colspan='2'>[[6cq5]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6CQ5 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6CQ5 FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=F8S:2-amino-7-(1,1-dioxo-1lambda~6~-thian-4-yl)-5-oxo-5H-[1]benzopyrano[2,3-b]pyridine-3-carboxylic+acid'>F8S</scene | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.354Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=F8S:2-amino-7-(1,1-dioxo-1lambda~6~-thian-4-yl)-5-oxo-5H-[1]benzopyrano[2,3-b]pyridine-3-carboxylic+acid'>F8S</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6cq5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6cq5 OCA], [https://pdbe.org/6cq5 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6cq5 RCSB], [https://www.ebi.ac.uk/pdbsum/6cq5 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6cq5 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/TBK1_HUMAN TBK1_HUMAN] Serine/threonine kinase that plays an essential role in regulating inflammatory responses to foreign agents. Following activation of toll-like receptors by viral or bacterial components, associates with TRAF3 and TANK and phosphorylates interferon regulatory factors (IRFs) IRF3 and IRF7 as well as DDX3X. This activity allows subsequent homodimerization and nuclear translocation of the IRFs leading to transcriptional activation of pro-inflammatory and antiviral genes including IFN-alpha and IFN-beta. In order to establish such an antiviral state, TBK1 form several different complexes whose composition depends on the type of cell and cellular stimuli. Thus, several scaffolding molecules including FADD, TRADD, MAVS or SINTBAD can be recruited to the TBK1-containing-complexes. Under particular conditions, functions as a NF-kappa-B effector by phosphorylating NF-kappa-B inhibitor alpha/NFKBIA, IKBKB or RELA to translocate NF-Kappa-B to the nucleus. Restricts bacterial proliferation by phosphorylating the autophagy receptor OPTN/Optineurin on 'Ser-177', thus enhancing LC3 binding affinity and antibacterial autophagy. Attenuates retroviral budding by phosphorylating the endosomal sorting complex required for transport-I (ESCRT-I) subunit VPS37C. Phosphorylates and activates AKT1. Phosphorylates Borna disease virus (BDV) P protein.<ref>PMID:10581243</ref> <ref>PMID:10783893</ref> <ref>PMID:11839743</ref> <ref>PMID:12692549</ref> <ref>PMID:12702806</ref> <ref>PMID:14703513</ref> <ref>PMID:15485837</ref> <ref>PMID:15489227</ref> <ref>PMID:15367631</ref> <ref>PMID:18583960</ref> <ref>PMID:21270402</ref> <ref>PMID:21464307</ref> <ref>PMID:21617041</ref> <ref>PMID:21138416</ref> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 19: | Line 19: | ||
</div> | </div> | ||
<div class="pdbe-citations 6cq5" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 6cq5" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Serine/threonine protein kinase 3D structures|Serine/threonine protein kinase 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: | [[Category: Beyett TS]] | ||
[[Category: | [[Category: Tesmer JJG]] | ||
Latest revision as of 18:09, 4 October 2023
TBK1 in Complex with Sulfone Analog of AmlexanoxTBK1 in Complex with Sulfone Analog of Amlexanox
Structural highlights
FunctionTBK1_HUMAN Serine/threonine kinase that plays an essential role in regulating inflammatory responses to foreign agents. Following activation of toll-like receptors by viral or bacterial components, associates with TRAF3 and TANK and phosphorylates interferon regulatory factors (IRFs) IRF3 and IRF7 as well as DDX3X. This activity allows subsequent homodimerization and nuclear translocation of the IRFs leading to transcriptional activation of pro-inflammatory and antiviral genes including IFN-alpha and IFN-beta. In order to establish such an antiviral state, TBK1 form several different complexes whose composition depends on the type of cell and cellular stimuli. Thus, several scaffolding molecules including FADD, TRADD, MAVS or SINTBAD can be recruited to the TBK1-containing-complexes. Under particular conditions, functions as a NF-kappa-B effector by phosphorylating NF-kappa-B inhibitor alpha/NFKBIA, IKBKB or RELA to translocate NF-Kappa-B to the nucleus. Restricts bacterial proliferation by phosphorylating the autophagy receptor OPTN/Optineurin on 'Ser-177', thus enhancing LC3 binding affinity and antibacterial autophagy. Attenuates retroviral budding by phosphorylating the endosomal sorting complex required for transport-I (ESCRT-I) subunit VPS37C. Phosphorylates and activates AKT1. Phosphorylates Borna disease virus (BDV) P protein.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] Publication Abstract from PubMedThe non-canonical IkappaB kinases TANK-binding kinase 1 (TBK1) and inhibitor of nuclear factor kappa-B kinase epsilon (IKKepsilon) play a key role in insulin-independent pathways that promote energy storage and block adaptive energy expenditure during obesity. Utilizing docking calculations and the x-ray structure of TBK1 bound to amlexanox, an inhibitor of these kinases with modest potency, a series of analogues was synthesized to develop a structure activity relationship (SAR) around the A- and C-rings of the core scaffold. A strategy was developed wherein R7 and R8 A-ring substituents were incorporated late in the synthetic sequence by utilizing palladium-catalyzed cross-coupling reactions on appropriate bromo precursors. Analogues display IC50 values as low as 210nM and reveal A-ring substituents that enhance selectivity toward either kinase. In cell assays, selected analogues display enhanced phosphorylation of p38 or TBK1 and elicited IL-6 secretion in 3T3-L1 adipocytes better than amlexanox. An analogue bearing a R7 cyclohexyl modification demonstrated robust IL-6 production in 3T3-L1 cells as well as a phosphorylation marker of efficacy and was tested in obese mice where it promoted serum IL-6 response, weight loss, and insulin sensitizing effects comparable to amlexanox. These studies provide impetus to expand the SAR around the amlexanox core toward uncovering analogues with development potential. Design, synthesis, and biological activity of substituted 2-amino-5-oxo-5H-chromeno[2,3-b]pyridine-3-carboxylic acid derivatives as inhibitors of the inflammatory kinases TBK1 and IKKepsilon for the treatment of obesity.,Beyett TS, Gan X, Reilly SM, Gomez AV, Chang L, Tesmer JJG, Saltiel AR, Showalter HD Bioorg Med Chem. 2018 Nov 1;26(20):5443-5461. doi: 10.1016/j.bmc.2018.09.020., Epub 2018 Sep 20. PMID:30270002[15] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|