6by8: Difference between revisions
m Protected "6by8" [edit=sysop:move=sysop] |
No edit summary |
||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The | ==Menin in complex with MI-1482== | ||
<StructureSection load='6by8' size='340' side='right'caption='[[6by8]], [[Resolution|resolution]] 1.90Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[6by8]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6BY8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6BY8 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=DMS:DIMETHYL+SULFOXIDE'>DMS</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=FNV:4-methyl-1-{[(2R)-5-oxomorpholin-2-yl]methyl}-5-[(4-{[6-(2,2,2-trifluoroethyl)thieno[2,3-d]pyrimidin-4-yl]amino}piperidin-1-yl)methyl]-1H-indole-2-carbonitrile'>FNV</scene>, <scene name='pdbligand=PG4:TETRAETHYLENE+GLYCOL'>PG4</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6by8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6by8 OCA], [https://pdbe.org/6by8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6by8 RCSB], [https://www.ebi.ac.uk/pdbsum/6by8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6by8 ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/MEN1_HUMAN MEN1_HUMAN] Defects in MEN1 are the cause of familial multiple endocrine neoplasia type I (MEN1) [MIM:[https://omim.org/entry/131100 131100]. Autosomal dominant disorder characterized by tumors of the parathyroid glands, gastro-intestinal endocrine tissue, the anterior pituitary and other tissues. Cutaneous lesions and nervous-tissue tumors can exist. Prognosis in MEN1 patients is related to hormonal hypersecretion by tumors, such as hypergastrinemia causing severe peptic ulcer disease (Zollinger-Ellison syndrome, ZES), primary hyperparathyroidism, and acute forms of hyperinsulinemia.<ref>PMID:14992727</ref> <ref>PMID:9989505</ref> <ref>PMID:9103196</ref> <ref>PMID:17555499</ref> <ref>PMID:9215689</ref> <ref>PMID:9215690</ref> <ref>PMID:9463336</ref> <ref>PMID:9683585</ref> <ref>PMID:9820618</ref> <ref>PMID:9671267</ref> <ref>PMID:10660339</ref> <ref>PMID:9506756</ref> <ref>PMID:9709921</ref> <ref>PMID:9709976</ref> <ref>PMID:9709985</ref> <ref>PMID:9740255</ref> <ref>PMID:9747036</ref> <ref>PMID:9832038</ref> <ref>PMID:10617276</ref> <ref>PMID:10229909</ref> <ref>PMID:10576763</ref> <ref>PMID:9888389</ref> <ref>PMID:10090472</ref> <ref>PMID:10534569</ref> <ref>PMID:10993647</ref> <ref>PMID:10849016</ref> <ref>PMID:10664520</ref> <ref>PMID:11102994</ref> <ref>PMID:11134142</ref> <ref>PMID:11241849</ref> <ref>PMID:12112656</ref> <ref>PMID:12417605</ref> <ref>PMID:12050235</ref> <ref>PMID:12699448</ref> <ref>PMID:12791038</ref> <ref>PMID:12652570</ref> <ref>PMID:14686752</ref> <ref>PMID:12746426</ref> <ref>PMID:15730416</ref> <ref>PMID:15714081</ref> Defects in MEN1 are the cause of familial isolated hyperparathyroidism (FIHP) [MIM:[https://omim.org/entry/145000 145000]; also known as hyperparathyroidism type 1 (HRPT1). FIHP is an autosomal dominant disorder characterized by hypercalcemia, elevated parathyroid hormone (PTH) levels, and uniglandular or multiglandular parathyroid tumors.<ref>PMID:9888389</ref> <ref>PMID:12699448</ref> <ref>PMID:9792884</ref> <ref>PMID:9843042</ref> <ref>PMID:10664521</ref> <ref>PMID:10634381</ref> <ref>PMID:12016470</ref> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/MEN1_HUMAN MEN1_HUMAN] Essential component of a MLL/SET1 histone methyltransferase (HMT) complex, a complex that specifically methylates 'Lys-4' of histone H3 (H3K4). Functions as a transcriptional regulator. Binds to the TERT promoter and represses telomerase expression. Plays a role in TGFB1-mediated inhibition of cell-proliferation, possibly regulating SMAD3 transcriptional activity. Represses JUND-mediated transcriptional activation on AP1 sites, as well as that mediated by NFKB subunit RELA. Positively regulates HOXC8 and HOXC6 gene expression. May be involved in normal hematopoiesis through the activation of HOXA9 expression (By similarity). May be involved in DNA repair.<ref>PMID:11526476</ref> <ref>PMID:11274402</ref> <ref>PMID:12874027</ref> <ref>PMID:12837246</ref> <ref>PMID:14992727</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The protein-protein interaction between menin and mixed-lineage leukemia 1 (MLL1) plays an important role in development of acute leukemia with translocations of the MLL1 gene and in solid tumors. Here, we report the development of a new generation of menin-MLL1 inhibitors identified by structure-based optimization of the thienopyrimidine class of compounds. This work resulted in compound 28 (MI-1481), which showed very potent inhibition of the menin-MLL1 interaction (IC50 = 3.6 nM), representing the most potent reversible menin-MLL1 inhibitor reported to date. The crystal structure of the menin-28 complex revealed a hydrogen bond with Glu366 and hydrophobic interactions, which contributed to strong inhibitory activity of 28. Compound 28 also demonstrates pronounced activity in MLL leukemia cells and in vivo in MLL leukemia models. Thus, 28 is a valuable menin-MLL1 inhibitor that can be used for potential therapeutic applications and in further studies regarding the role of menin in cancer. | |||
Complexity of Blocking Bivalent Protein-Protein Interactions: Development of a Highly Potent Inhibitor of the Menin-Mixed-Lineage Leukemia Interaction.,Borkin D, Klossowski S, Pollock J, Miao H, Linhares BM, Kempinska K, Jin Z, Purohit T, Wen B, He M, Sun D, Cierpicki T, Grembecka J J Med Chem. 2018 Jun 14;61(11):4832-4850. doi: 10.1021/acs.jmedchem.8b00071. Epub, 2018 May 23. PMID:29738674<ref>PMID:29738674</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
<div class="pdbe-citations 6by8" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Menin|Menin]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | |||
[[Category: Borkin T]] | |||
[[Category: Cierpicki T]] | |||
[[Category: Grembecka J]] | |||
[[Category: Klossowski S]] | |||
[[Category: Linhares B]] | |||
[[Category: Pollock J]] |
Latest revision as of 17:52, 4 October 2023
Menin in complex with MI-1482Menin in complex with MI-1482
Structural highlights
DiseaseMEN1_HUMAN Defects in MEN1 are the cause of familial multiple endocrine neoplasia type I (MEN1) [MIM:131100. Autosomal dominant disorder characterized by tumors of the parathyroid glands, gastro-intestinal endocrine tissue, the anterior pituitary and other tissues. Cutaneous lesions and nervous-tissue tumors can exist. Prognosis in MEN1 patients is related to hormonal hypersecretion by tumors, such as hypergastrinemia causing severe peptic ulcer disease (Zollinger-Ellison syndrome, ZES), primary hyperparathyroidism, and acute forms of hyperinsulinemia.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] Defects in MEN1 are the cause of familial isolated hyperparathyroidism (FIHP) [MIM:145000; also known as hyperparathyroidism type 1 (HRPT1). FIHP is an autosomal dominant disorder characterized by hypercalcemia, elevated parathyroid hormone (PTH) levels, and uniglandular or multiglandular parathyroid tumors.[41] [42] [43] [44] [45] [46] [47] FunctionMEN1_HUMAN Essential component of a MLL/SET1 histone methyltransferase (HMT) complex, a complex that specifically methylates 'Lys-4' of histone H3 (H3K4). Functions as a transcriptional regulator. Binds to the TERT promoter and represses telomerase expression. Plays a role in TGFB1-mediated inhibition of cell-proliferation, possibly regulating SMAD3 transcriptional activity. Represses JUND-mediated transcriptional activation on AP1 sites, as well as that mediated by NFKB subunit RELA. Positively regulates HOXC8 and HOXC6 gene expression. May be involved in normal hematopoiesis through the activation of HOXA9 expression (By similarity). May be involved in DNA repair.[48] [49] [50] [51] [52] Publication Abstract from PubMedThe protein-protein interaction between menin and mixed-lineage leukemia 1 (MLL1) plays an important role in development of acute leukemia with translocations of the MLL1 gene and in solid tumors. Here, we report the development of a new generation of menin-MLL1 inhibitors identified by structure-based optimization of the thienopyrimidine class of compounds. This work resulted in compound 28 (MI-1481), which showed very potent inhibition of the menin-MLL1 interaction (IC50 = 3.6 nM), representing the most potent reversible menin-MLL1 inhibitor reported to date. The crystal structure of the menin-28 complex revealed a hydrogen bond with Glu366 and hydrophobic interactions, which contributed to strong inhibitory activity of 28. Compound 28 also demonstrates pronounced activity in MLL leukemia cells and in vivo in MLL leukemia models. Thus, 28 is a valuable menin-MLL1 inhibitor that can be used for potential therapeutic applications and in further studies regarding the role of menin in cancer. Complexity of Blocking Bivalent Protein-Protein Interactions: Development of a Highly Potent Inhibitor of the Menin-Mixed-Lineage Leukemia Interaction.,Borkin D, Klossowski S, Pollock J, Miao H, Linhares BM, Kempinska K, Jin Z, Purohit T, Wen B, He M, Sun D, Cierpicki T, Grembecka J J Med Chem. 2018 Jun 14;61(11):4832-4850. doi: 10.1021/acs.jmedchem.8b00071. Epub, 2018 May 23. PMID:29738674[53] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|