6ap4: Difference between revisions
m Protected "6ap4" [edit=sysop:move=sysop] |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The | ==Crystal structure of the DNA polymerase III subunit beta from Acinetobacter baumannii== | ||
<StructureSection load='6ap4' size='340' side='right'caption='[[6ap4]], [[Resolution|resolution]] 2.95Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[6ap4]] is a 16 chain structure with sequence from [https://en.wikipedia.org/wiki/Acinetobacter_baumannii Acinetobacter baumannii]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6AP4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6AP4 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.95Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6ap4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6ap4 OCA], [https://pdbe.org/6ap4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6ap4 RCSB], [https://www.ebi.ac.uk/pdbsum/6ap4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6ap4 ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/V5V7W3_ACIBA V5V7W3_ACIBA] Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP-independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of replication as well as for processivity of DNA replication.[PIRNR:PIRNR000804] | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Bacterial sliding clamps bind to DNA and act as protein-protein interaction hubs for several proteins involved in DNA replication and repair. The partner proteins all bind to a common pocket on sliding clamps via conserved linear peptide sequence motifs, which suggest the pocket as an attractive target for development of new antibiotics. Herein we report the X-ray crystal structures and biochemical characterization of beta sliding clamps from the Gram-negative pathogens Pseudomonas aeruginosa, Acinetobacter baumannii and Enterobacter cloacae. The structures reveal close similarity between the pathogen and Escherichia coli clamps and similar patterns of binding to linear clamp-binding motif peptides. The results suggest that linear motif-sliding clamp interactions are well conserved and an antibiotic targeting the sliding clamp should have broad-spectrum activity against Gram-negative pathogens. | |||
Crystal structures and biochemical characterization of DNA sliding clamps from three Gram-negative bacterial pathogens.,McGrath AE, Martyn AP, Whittell LR, Dawes FE, Beck JL, Dixon NE, Kelso MJ, Oakley AJ J Struct Biol. 2018 Oct 23. pii: S1047-8477(18)30281-8. doi:, 10.1016/j.jsb.2018.10.008. PMID:30366028<ref>PMID:30366028</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
[[Category: | <div class="pdbe-citations 6ap4" style="background-color:#fffaf0;"></div> | ||
[[Category: Oakley | |||
==See Also== | |||
*[[DNA polymerase 3D structures|DNA polymerase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Acinetobacter baumannii]] | |||
[[Category: Large Structures]] | |||
[[Category: McGrath AE]] | |||
[[Category: Oakley AJ]] |
Latest revision as of 17:22, 4 October 2023
Crystal structure of the DNA polymerase III subunit beta from Acinetobacter baumanniiCrystal structure of the DNA polymerase III subunit beta from Acinetobacter baumannii
Structural highlights
FunctionV5V7W3_ACIBA Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP-independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of replication as well as for processivity of DNA replication.[PIRNR:PIRNR000804] Publication Abstract from PubMedBacterial sliding clamps bind to DNA and act as protein-protein interaction hubs for several proteins involved in DNA replication and repair. The partner proteins all bind to a common pocket on sliding clamps via conserved linear peptide sequence motifs, which suggest the pocket as an attractive target for development of new antibiotics. Herein we report the X-ray crystal structures and biochemical characterization of beta sliding clamps from the Gram-negative pathogens Pseudomonas aeruginosa, Acinetobacter baumannii and Enterobacter cloacae. The structures reveal close similarity between the pathogen and Escherichia coli clamps and similar patterns of binding to linear clamp-binding motif peptides. The results suggest that linear motif-sliding clamp interactions are well conserved and an antibiotic targeting the sliding clamp should have broad-spectrum activity against Gram-negative pathogens. Crystal structures and biochemical characterization of DNA sliding clamps from three Gram-negative bacterial pathogens.,McGrath AE, Martyn AP, Whittell LR, Dawes FE, Beck JL, Dixon NE, Kelso MJ, Oakley AJ J Struct Biol. 2018 Oct 23. pii: S1047-8477(18)30281-8. doi:, 10.1016/j.jsb.2018.10.008. PMID:30366028[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|