5too: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:


==Crystal structure of alkaline phosphatase PafA T79S, N100A, K162A, R164A mutant==
==Crystal structure of alkaline phosphatase PafA T79S, N100A, K162A, R164A mutant==
<StructureSection load='5too' size='340' side='right' caption='[[5too]], [[Resolution|resolution]] 2.03&Aring;' scene=''>
<StructureSection load='5too' size='340' side='right'caption='[[5too]], [[Resolution|resolution]] 2.03&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[5too]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_13253 Atcc 13253]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5TOO OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5TOO FirstGlance]. <br>
<table><tr><td colspan='2'>[[5too]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Elizabethkingia_meningoseptica Elizabethkingia meningoseptica]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5TOO OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5TOO FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.031&#8491;</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">pafA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=238 ATCC 13253])</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Alkaline_phosphatase Alkaline phosphatase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.3.1 3.1.3.1] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5too FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5too OCA], [https://pdbe.org/5too PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5too RCSB], [https://www.ebi.ac.uk/pdbsum/5too PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5too ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5too FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5too OCA], [http://pdbe.org/5too PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5too RCSB], [http://www.ebi.ac.uk/pdbsum/5too PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5too ProSAT]</span></td></tr>
</table>
</table>
== Function ==
[https://www.uniprot.org/uniprot/ALPH_ELIME ALPH_ELIME]
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Line 18: Line 19:
</div>
</div>
<div class="pdbe-citations 5too" style="background-color:#fffaf0;"></div>
<div class="pdbe-citations 5too" style="background-color:#fffaf0;"></div>
==See Also==
*[[Alkaline phosphatase 3D structures|Alkaline phosphatase 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Alkaline phosphatase]]
[[Category: Elizabethkingia meningoseptica]]
[[Category: Atcc 13253]]
[[Category: Large Structures]]
[[Category: AlSadhan, I]]
[[Category: AlSadhan I]]
[[Category: Herschlag, D]]
[[Category: Herschlag D]]
[[Category: Lyubimov, A Y]]
[[Category: Lyubimov AY]]
[[Category: Sunden, F]]
[[Category: Sunden F]]
[[Category: Hydrolase]]
[[Category: Pafa]]
[[Category: Phosphomonoesterase]]
[[Category: Weak phosphate binder]]
[[Category: Zinc bimetallo core]]

Latest revision as of 16:06, 4 October 2023

Crystal structure of alkaline phosphatase PafA T79S, N100A, K162A, R164A mutantCrystal structure of alkaline phosphatase PafA T79S, N100A, K162A, R164A mutant

Structural highlights

5too is a 1 chain structure with sequence from Elizabethkingia meningoseptica. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.031Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

ALPH_ELIME

Publication Abstract from PubMed

Members of enzyme superfamilies specialize in different reactions but often exhibit catalytic promiscuity for one anothers reactions, consistent with catalytic promiscuity as an important driver in the evolution of new enzymes. Wanting to understand how catalytic promiscuity and other factors may influence evolution across a superfamily, we turned to the well-studied Alkaline Phosphatase (AP) superfamily, comparing three of its members-two evolutionarily distinct phosphatases and a phosphodiesterase. We mutated distinguishing active-site residues to generate enzymes that had a common Zn2+ bimetallo core, but little sequence similarity and different auxiliary domains. We then tested the catalytic capabilities of these pruned enzymes with a series of substrates. A substantial rate enhancement of ~1011-fold for both phosphate mono- and diester hydrolysis by each enzyme indicated that the Zn2+ bimetallo core is an effective mono/di-esterase generalist and that the bimetallo cores were not evolutionarily tuned to prefer their cognate reactions. In contrast, our pruned enzymes were ineffective sulfatases, and this limited promiscuity may have provided a driving force for founding the distinct one-metal-ion branch that contains all known AP superfamily sulfatases. Finally, our pruned enzymes exhibited 107-108 fold phosphotriesterase rate enhancements, despite absence of such enzymes within the AP superfamily. We speculate that the superfamily active site architecture involved in nucleophile positioning prevents accommodation of the additional triester substituent. Overall, we suggest that catalytic promiscuity and the ease or difficulty of remodeling and building onto existing protein scaffolds have greatly influenced the course of enzyme evolution and will provide lessons for engineering new enzymes.

Differential Catalytic Promiscuity of the Alkaline Phosphatase Superfamily Bimetallo Core Reveals Mechanistic Features Underlying Enzyme Evolution.,Sunden F, AlSadhan I, Lyubimov A, Doukov T, Swan J, Herschlag D J Biol Chem. 2017 Oct 25. pii: jbc.M117.788240. doi: 10.1074/jbc.M117.788240. PMID:29070681[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Sunden F, AlSadhan I, Lyubimov A, Doukov T, Swan J, Herschlag D. Differential Catalytic Promiscuity of the Alkaline Phosphatase Superfamily Bimetallo Core Reveals Mechanistic Features Underlying Enzyme Evolution. J Biol Chem. 2017 Oct 25. pii: jbc.M117.788240. doi: 10.1074/jbc.M117.788240. PMID:29070681 doi:http://dx.doi.org/10.1074/jbc.M117.788240

5too, resolution 2.03Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA