5kj7: Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Structure of the Ca2+-bound synaptotagmin-1 SNARE complex (long unit cell form) - from XFEL diffraction== | |||
<StructureSection load='5kj7' size='340' side='right'caption='[[5kj7]], [[Resolution|resolution]] 3.50Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[5kj7]] is a 11 chain structure with sequence from [https://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5KJ7 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5KJ7 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.5Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5kj7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5kj7 OCA], [https://pdbe.org/5kj7 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5kj7 RCSB], [https://www.ebi.ac.uk/pdbsum/5kj7 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5kj7 ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/VAMP3_RAT VAMP3_RAT] SNARE involved in vesicular transport from the late endosomes to the trans-Golgi network. | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
X-ray free electron lasers (XFELs) reduce the effects of radiation damage on macromolecular diffraction data and thereby extend the limiting resolution. Previously, we adapted classical post-refinement techniques to XFEL diffraction data to produce accurate diffraction data sets from a limited number of diffraction images (Uervirojnangkoorn et al., 2015), and went on to use these techniques to obtain a complete data set from crystals of the synaptotagmin-1 / SNARE complex and to determine the structure at 3.5 A resolution (Zhou et al., 2015). Here, we describe new advances in our methods and present a reprocessed XFEL data set of the synaptotagmin-1 / SNARE complex. The reprocessing produced small improvements in electron density maps and the refined atomic model. The maps also contained more information than those of a lower resolution (4.1 A) synchrotron data set. Processing a set of simulated XFEL diffraction images revealed that our methods yield accurate data and atomic models. | |||
Advances in X-ray free electron laser (XFEL) diffraction data processing applied to the crystal structure of the synaptotagmin-1 / SNARE complex.,Lyubimov AY, Uervirojnangkoorn M, Zeldin OB, Zhou Q, Zhao M, Brewster AS, Michels-Clark T, Holton JM, Sauter NK, Weis WI, Brunger AT Elife. 2016 Oct 12;5. pii: e18740. doi: 10.7554/eLife.18740. PMID:27731796<ref>PMID:27731796</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
[[Category: | <div class="pdbe-citations 5kj7" style="background-color:#fffaf0;"></div> | ||
[[Category: | |||
[[Category: | ==See Also== | ||
[[Category: | *[[Synaptosomal-associated protein|Synaptosomal-associated protein]] | ||
[[Category: | *[[Synaptotagmin 3D structures|Synaptotagmin 3D structures]] | ||
[[Category: | *[[Syntaxin 3D structures|Syntaxin 3D structures]] | ||
[[Category: | *[[Vesicle-associated membrane protein|Vesicle-associated membrane protein]] | ||
[[Category: | == References == | ||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Large Structures]] | |||
[[Category: Rattus norvegicus]] | |||
[[Category: Brewster AS]] | |||
[[Category: Brunger AT]] | |||
[[Category: Lyubimov AY]] | |||
[[Category: Sauter NK]] | |||
[[Category: Uervirojnangkoorn M]] | |||
[[Category: Weis WI]] | |||
[[Category: Zhao M]] | |||
[[Category: Zhou Q]] |
Latest revision as of 13:01, 27 September 2023
Structure of the Ca2+-bound synaptotagmin-1 SNARE complex (long unit cell form) - from XFEL diffractionStructure of the Ca2+-bound synaptotagmin-1 SNARE complex (long unit cell form) - from XFEL diffraction
Structural highlights
FunctionVAMP3_RAT SNARE involved in vesicular transport from the late endosomes to the trans-Golgi network. Publication Abstract from PubMedX-ray free electron lasers (XFELs) reduce the effects of radiation damage on macromolecular diffraction data and thereby extend the limiting resolution. Previously, we adapted classical post-refinement techniques to XFEL diffraction data to produce accurate diffraction data sets from a limited number of diffraction images (Uervirojnangkoorn et al., 2015), and went on to use these techniques to obtain a complete data set from crystals of the synaptotagmin-1 / SNARE complex and to determine the structure at 3.5 A resolution (Zhou et al., 2015). Here, we describe new advances in our methods and present a reprocessed XFEL data set of the synaptotagmin-1 / SNARE complex. The reprocessing produced small improvements in electron density maps and the refined atomic model. The maps also contained more information than those of a lower resolution (4.1 A) synchrotron data set. Processing a set of simulated XFEL diffraction images revealed that our methods yield accurate data and atomic models. Advances in X-ray free electron laser (XFEL) diffraction data processing applied to the crystal structure of the synaptotagmin-1 / SNARE complex.,Lyubimov AY, Uervirojnangkoorn M, Zeldin OB, Zhou Q, Zhao M, Brewster AS, Michels-Clark T, Holton JM, Sauter NK, Weis WI, Brunger AT Elife. 2016 Oct 12;5. pii: e18740. doi: 10.7554/eLife.18740. PMID:27731796[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See Also
References
|
|