4tra: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:4tra.jpg|left|200px]]<br /><applet load="4tra" size="350" color="white" frame="true" align="right" spinBox="true"
caption="4tra, resolution 3.000&Aring;" />
'''RESTRAINED REFINEMENT OF TWO CRYSTALLINE FORMS OF YEAST ASPARTIC ACID AND PHENYLALANINE TRANSFER RNA CRYSTALS'''<br />


==Overview==
==RESTRAINED REFINEMENT OF TWO CRYSTALLINE FORMS OF YEAST ASPARTIC ACID AND PHENYLALANINE TRANSFER RNA CRYSTALS==
<StructureSection load='4tra' size='340' side='right'caption='[[4tra]], [[Resolution|resolution]] 3.00&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[4tra]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4TRA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4TRA FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1MA:6-HYDRO-1-METHYLADENOSINE-5-MONOPHOSPHATE'>1MA</scene>, <scene name='pdbligand=2MG:2N-METHYLGUANOSINE-5-MONOPHOSPHATE'>2MG</scene>, <scene name='pdbligand=5MC:5-METHYLCYTIDINE-5-MONOPHOSPHATE'>5MC</scene>, <scene name='pdbligand=5MU:5-METHYLURIDINE+5-MONOPHOSPHATE'>5MU</scene>, <scene name='pdbligand=7MG:7N-METHYL-8-HYDROGUANOSINE-5-MONOPHOSPHATE'>7MG</scene>, <scene name='pdbligand=H2U:5,6-DIHYDROURIDINE-5-MONOPHOSPHATE'>H2U</scene>, <scene name='pdbligand=M2G:N2-DIMETHYLGUANOSINE-5-MONOPHOSPHATE'>M2G</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=OMC:O2-METHYLYCYTIDINE-5-MONOPHOSPHATE'>OMC</scene>, <scene name='pdbligand=OMG:O2-METHYLGUANOSINE-5-MONOPHOSPHATE'>OMG</scene>, <scene name='pdbligand=PSU:PSEUDOURIDINE-5-MONOPHOSPHATE'>PSU</scene>, <scene name='pdbligand=YG:WYBUTOSINE'>YG</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4tra FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4tra OCA], [https://pdbe.org/4tra PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4tra RCSB], [https://www.ebi.ac.uk/pdbsum/4tra PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4tra ProSAT]</span></td></tr>
</table>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Four transfer RNA crystals, the monoclinic and orthorhombic forms of yeast tRNA(Phe) as well as forms A and B of yeast tRNA(Asp), have been submitted to the same restrained least-squares refinement program and refined to an R factor well below 20% for about 4500 reflections between 10 and 3 A. In yeast tRNA(Asp) crystals the molecules exist as dimers with base pairings of the anticodon (AC) triplets and labilization of the tertiary interaction between one invariant guanine of the dihydrouridine (D) loop and the invariant cytosine of the thymine (T) loop (G19-C56). In yeast tRNA(Phe) crystals, the molecules exist as monomers with only weak intermolecular packing contacts between symmetry-related molecules. Despite this, the tertiary folds of the L-shaped tRNA structures are identical when allowance is made for base sequence changes between tRNA(Phe) and tRNA(Asp). However, the relative mobilities of two regions are inverse in the two structures with the AC loop more mobile than the D loop in tRNA(Phe) and the D loop more mobile than the AC loop in tRNA(Asp). In addition, the T loop becomes mobile in tRNA(Asp). The present refinements were performed to exclude packing effects or refinement bias as possible sources of such differential dynamic behavior. It is concluded that the transfer of flexibility from the anticodon to the D- and T-loop region in tRNA(Asp) is not a crystal-line artefact. Further, analysis of the four structures supports a mechanism for the flexibility transfer through base stacking in the AC loop and concomitant variations in twist angles between base pairs of the anticodon helix which propagate up to the D- and T-loop region.
Four transfer RNA crystals, the monoclinic and orthorhombic forms of yeast tRNA(Phe) as well as forms A and B of yeast tRNA(Asp), have been submitted to the same restrained least-squares refinement program and refined to an R factor well below 20% for about 4500 reflections between 10 and 3 A. In yeast tRNA(Asp) crystals the molecules exist as dimers with base pairings of the anticodon (AC) triplets and labilization of the tertiary interaction between one invariant guanine of the dihydrouridine (D) loop and the invariant cytosine of the thymine (T) loop (G19-C56). In yeast tRNA(Phe) crystals, the molecules exist as monomers with only weak intermolecular packing contacts between symmetry-related molecules. Despite this, the tertiary folds of the L-shaped tRNA structures are identical when allowance is made for base sequence changes between tRNA(Phe) and tRNA(Asp). However, the relative mobilities of two regions are inverse in the two structures with the AC loop more mobile than the D loop in tRNA(Phe) and the D loop more mobile than the AC loop in tRNA(Asp). In addition, the T loop becomes mobile in tRNA(Asp). The present refinements were performed to exclude packing effects or refinement bias as possible sources of such differential dynamic behavior. It is concluded that the transfer of flexibility from the anticodon to the D- and T-loop region in tRNA(Asp) is not a crystal-line artefact. Further, analysis of the four structures supports a mechanism for the flexibility transfer through base stacking in the AC loop and concomitant variations in twist angles between base pairs of the anticodon helix which propagate up to the D- and T-loop region.


==About this Structure==
Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals.,Westhof E, Dumas P, Moras D Acta Crystallogr A. 1988 Mar 1;44 ( Pt 2):112-23. PMID:3272146<ref>PMID:3272146</ref>
4TRA is a [http://en.wikipedia.org/wiki/Protein_complex Protein complex] structure of sequences from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae] with <scene name='pdbligand=MG:'>MG</scene> as [http://en.wikipedia.org/wiki/ligand ligand]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4TRA OCA].


==Reference==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals., Westhof E, Dumas P, Moras D, Acta Crystallogr A. 1988 Mar 1;44 ( Pt 2):112-23. PMID:[http://ispc.weizmann.ac.il//pmbin/getpm?pmid=3272146 3272146]
</div>
[[Category: Protein complex]]
<div class="pdbe-citations 4tra" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Large Structures]]
[[Category: Saccharomyces cerevisiae]]
[[Category: Saccharomyces cerevisiae]]
[[Category: Dumas, P.]]
[[Category: Dumas P]]
[[Category: Moras, D.]]
[[Category: Moras D]]
[[Category: Westhof, E.]]
[[Category: Westhof E]]
[[Category: MG]]
[[Category: loops]]
[[Category: single strand]]
[[Category: t-rna]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 19:14:33 2008''

Latest revision as of 10:22, 27 September 2023

RESTRAINED REFINEMENT OF TWO CRYSTALLINE FORMS OF YEAST ASPARTIC ACID AND PHENYLALANINE TRANSFER RNA CRYSTALSRESTRAINED REFINEMENT OF TWO CRYSTALLINE FORMS OF YEAST ASPARTIC ACID AND PHENYLALANINE TRANSFER RNA CRYSTALS

Structural highlights

4tra is a 1 chain structure with sequence from Saccharomyces cerevisiae. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3Å
Ligands:, , , , , , , , , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Publication Abstract from PubMed

Four transfer RNA crystals, the monoclinic and orthorhombic forms of yeast tRNA(Phe) as well as forms A and B of yeast tRNA(Asp), have been submitted to the same restrained least-squares refinement program and refined to an R factor well below 20% for about 4500 reflections between 10 and 3 A. In yeast tRNA(Asp) crystals the molecules exist as dimers with base pairings of the anticodon (AC) triplets and labilization of the tertiary interaction between one invariant guanine of the dihydrouridine (D) loop and the invariant cytosine of the thymine (T) loop (G19-C56). In yeast tRNA(Phe) crystals, the molecules exist as monomers with only weak intermolecular packing contacts between symmetry-related molecules. Despite this, the tertiary folds of the L-shaped tRNA structures are identical when allowance is made for base sequence changes between tRNA(Phe) and tRNA(Asp). However, the relative mobilities of two regions are inverse in the two structures with the AC loop more mobile than the D loop in tRNA(Phe) and the D loop more mobile than the AC loop in tRNA(Asp). In addition, the T loop becomes mobile in tRNA(Asp). The present refinements were performed to exclude packing effects or refinement bias as possible sources of such differential dynamic behavior. It is concluded that the transfer of flexibility from the anticodon to the D- and T-loop region in tRNA(Asp) is not a crystal-line artefact. Further, analysis of the four structures supports a mechanism for the flexibility transfer through base stacking in the AC loop and concomitant variations in twist angles between base pairs of the anticodon helix which propagate up to the D- and T-loop region.

Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals.,Westhof E, Dumas P, Moras D Acta Crystallogr A. 1988 Mar 1;44 ( Pt 2):112-23. PMID:3272146[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Westhof E, Dumas P, Moras D. Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals. Acta Crystallogr A. 1988 Mar 1;44 ( Pt 2):112-23. PMID:3272146

4tra, resolution 3.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA