2xlm: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:2xlm.png|left|200px]]


<!--
==Cytochrome c prime from Alcaligenes xylosoxidans: Ferrous recombinant native with bound NO==
The line below this paragraph, containing "STRUCTURE_2xlm", creates the "Structure Box" on the page.
<StructureSection load='2xlm' size='340' side='right'caption='[[2xlm]], [[Resolution|resolution]] 1.19&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[2xlm]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Achromobacter_xylosoxidans Achromobacter xylosoxidans]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2XLM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2XLM FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.19&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=HEC:HEME+C'>HEC</scene>, <scene name='pdbligand=NO:NITRIC+OXIDE'>NO</scene>, <scene name='pdbligand=PCA:PYROGLUTAMIC+ACID'>PCA</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
{{STRUCTURE_2xlm|  PDB=2xlm  |  SCENE=  }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2xlm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2xlm OCA], [https://pdbe.org/2xlm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2xlm RCSB], [https://www.ebi.ac.uk/pdbsum/2xlm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2xlm ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/CYCP_ALCXX CYCP_ALCXX] Cytochrome c' is the most widely occurring bacterial c-type cytochrome. Cytochromes c' are high-spin proteins and the heme has no sixth ligand. Their exact function is not known.
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Hemoproteins play central roles in the formation and utilization of nitric oxide (NO) in cellular signalling, as well as in protection against nitrosative stress. Key to heme-nitrosyl function and reactivity is the Fe coordination number (5 or 6). For 5c-NO complexes, the potential exists for NO to bind on either heme face, as in the microbial cytochrome c' from Alcaligenes xylosoxidans (AxCYTcp), which forms a stable proximal 5c-NO complex via a distal 6c-NO intermediate and a putative dinitrosyl species. Strong parallels between the NO binding kinetics of AxCYTcp, the eukaryotic NO-sensor, soluble guanylate cyclase, and the ferrocytochrome c/cardiolipin complex have led to the suggestion that a distal to proximal NO switch could contribute to the selective ligand responses in gas-sensing hemoproteins. The proximal NO binding site in AxCYTcp is close to a conserved basic (Arg 124) residue that is postulated to modulate NO reactivity. We have replaced Arg 124 by five different amino acids and have determined high-resolution (1.07-1.40A) crystallographic structures with and without NO. These, together with kinetic and resonance Raman data, provide new insights into the mechanism of distal to proximal heme-NO conversion, including the determinants of Fe-His bond scission. The Arg124Ala variant allowed us to determine the structure of an analog of the previously unobserved key 5c-NO distal intermediate species. The very high-resolution structures combined with the extensive spectroscopic and kinetic data have allowed us to provide a fresh insight into heme reactivity towards NO, a reaction that is of wide importance in biology.


===CYTOCHROME C PRIME FROM ALCALIGENES XYLOSOXIDANS: FERROUS RECOMBINANT NATIVE WITH BOUND NO===
Distal to proximal NO conversion in hemoproteins: The role of the proximal pocket.,Hough MA, Antonyuk SV, Barbieri S, Rustage N, McKay AL, Servid AE, Eady RR, Andrew CR, Hasnain SS J Mol Biol. 2010 Nov 9. PMID:21073879<ref>PMID:21073879</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 2xlm" style="background-color:#fffaf0;"></div>


<!--
==See Also==
The line below this paragraph, {{ABSTRACT_PUBMED_21073879}}, adds the Publication Abstract to the page
*[[Cytochrome C 3D structures|Cytochrome C 3D structures]]
(as it appears on PubMed at http://www.pubmed.gov), where 21073879 is the PubMed ID number.
== References ==
-->
<references/>
{{ABSTRACT_PUBMED_21073879}}
__TOC__
 
</StructureSection>
==About this Structure==
[[2xlm]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Achromobacter_xylosoxidans Achromobacter xylosoxidans]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2XLM OCA].
 
==Reference==
<ref group="xtra">PMID:21073879</ref><references group="xtra"/>
[[Category: Achromobacter xylosoxidans]]
[[Category: Achromobacter xylosoxidans]]
[[Category: Antonyuk, S V.]]
[[Category: Large Structures]]
[[Category: Hasnain, S S.]]
[[Category: Antonyuk SV]]
[[Category: Hough, M A.]]
[[Category: Hasnain SS]]
[[Category: Strange, R.]]
[[Category: Hough MA]]
[[Category: Strange R]]

Latest revision as of 21:44, 20 September 2023

Cytochrome c prime from Alcaligenes xylosoxidans: Ferrous recombinant native with bound NOCytochrome c prime from Alcaligenes xylosoxidans: Ferrous recombinant native with bound NO

Structural highlights

2xlm is a 1 chain structure with sequence from Achromobacter xylosoxidans. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.19Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CYCP_ALCXX Cytochrome c' is the most widely occurring bacterial c-type cytochrome. Cytochromes c' are high-spin proteins and the heme has no sixth ligand. Their exact function is not known.

Publication Abstract from PubMed

Hemoproteins play central roles in the formation and utilization of nitric oxide (NO) in cellular signalling, as well as in protection against nitrosative stress. Key to heme-nitrosyl function and reactivity is the Fe coordination number (5 or 6). For 5c-NO complexes, the potential exists for NO to bind on either heme face, as in the microbial cytochrome c' from Alcaligenes xylosoxidans (AxCYTcp), which forms a stable proximal 5c-NO complex via a distal 6c-NO intermediate and a putative dinitrosyl species. Strong parallels between the NO binding kinetics of AxCYTcp, the eukaryotic NO-sensor, soluble guanylate cyclase, and the ferrocytochrome c/cardiolipin complex have led to the suggestion that a distal to proximal NO switch could contribute to the selective ligand responses in gas-sensing hemoproteins. The proximal NO binding site in AxCYTcp is close to a conserved basic (Arg 124) residue that is postulated to modulate NO reactivity. We have replaced Arg 124 by five different amino acids and have determined high-resolution (1.07-1.40A) crystallographic structures with and without NO. These, together with kinetic and resonance Raman data, provide new insights into the mechanism of distal to proximal heme-NO conversion, including the determinants of Fe-His bond scission. The Arg124Ala variant allowed us to determine the structure of an analog of the previously unobserved key 5c-NO distal intermediate species. The very high-resolution structures combined with the extensive spectroscopic and kinetic data have allowed us to provide a fresh insight into heme reactivity towards NO, a reaction that is of wide importance in biology.

Distal to proximal NO conversion in hemoproteins: The role of the proximal pocket.,Hough MA, Antonyuk SV, Barbieri S, Rustage N, McKay AL, Servid AE, Eady RR, Andrew CR, Hasnain SS J Mol Biol. 2010 Nov 9. PMID:21073879[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Hough MA, Antonyuk SV, Barbieri S, Rustage N, McKay AL, Servid AE, Eady RR, Andrew CR, Hasnain SS. Distal to proximal NO conversion in hemoproteins: The role of the proximal pocket. J Mol Biol. 2010 Nov 9. PMID:21073879 doi:10.1016/j.jmb.2010.10.035

2xlm, resolution 1.19Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA