4rx6: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4rx6]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_subtilis_subsp._subtilis_str._168 Bacillus subtilis subsp. subtilis str. 168]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4RX6 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4RX6 FirstGlance]. <br> | <table><tr><td colspan='2'>[[4rx6]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_subtilis_subsp._subtilis_str._168 Bacillus subtilis subsp. subtilis str. 168]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4RX6 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4RX6 FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.5994Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4rx6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4rx6 OCA], [https://pdbe.org/4rx6 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4rx6 RCSB], [https://www.ebi.ac.uk/pdbsum/4rx6 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4rx6 ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4rx6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4rx6 OCA], [https://pdbe.org/4rx6 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4rx6 RCSB], [https://www.ebi.ac.uk/pdbsum/4rx6 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4rx6 ProSAT]</span></td></tr> | ||
</table> | </table> |
Latest revision as of 20:58, 20 September 2023
Structure of B. subtilis GlnK-ATP complex to 2.6 AngstromStructure of B. subtilis GlnK-ATP complex to 2.6 Angstrom
Structural highlights
FunctionNRGB_BACSU Required for full induction of the nrgAB operon under conditions of ammonium limitation.[1] Publication Abstract from PubMedAll cells must sense and adapt to changing nutrient availability. However, detailed molecular mechanisms coordinating such regulatory pathways remain poorly understood. In Bacillus subtilis, nitrogen homeostasis is controlled by a unique circuitry composed of the regulator TnrA, which is deactivated by feedback-inhibited glutamine synthetase (GS) during nitrogen excess and stabilized by GlnK upon nitrogen depletion, and the repressor GlnR. Here we describe a complete molecular dissection of this network. TnrA and GlnR, the global nitrogen homeostatic transcription regulators, are revealed as founders of a new structural family of dimeric DNA-binding proteins with C-terminal, flexible, effector-binding sensors that modulate their dimerization. Remarkably, the TnrA sensor domains insert into GS intersubunit catalytic pores, destabilizing the TnrA dimer and causing an unprecedented GS dodecamer-to-tetradecamer conversion, which concomitantly deactivates GS. In contrast, each subunit of the GlnK trimer "templates" active TnrA dimers. Unlike TnrA, GlnR sensors mediate an autoinhibitory dimer-destabilizing interaction alleviated by GS, which acts as a GlnR chaperone. Thus, these studies unveil heretofore unseen mechanisms by which inducible sensor domains drive metabolic reprograming in the model Gram-positive bacterium B. subtilis. Structures of regulatory machinery reveal novel molecular mechanisms controlling B. subtilis nitrogen homeostasis.,Schumacher MA, Chinnam NB, Cuthbert B, Tonthat NK, Whitfill T Genes Dev. 2015 Feb 15;29(4):451-64. doi: 10.1101/gad.254714.114. PMID:25691471[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|