4rsj: Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Pyrococcus furiosus Smc hinge domain with an extended coiled coil== | |||
<StructureSection load='4rsj' size='340' side='right'caption='[[4rsj]], [[Resolution|resolution]] 3.50Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[4rsj]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Pyrococcus_furiosus_DSM_3638 Pyrococcus furiosus DSM 3638]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4RSJ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4RSJ FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.5Å</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4rsj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4rsj OCA], [https://pdbe.org/4rsj PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4rsj RCSB], [https://www.ebi.ac.uk/pdbsum/4rsj PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4rsj ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/SMC_PYRFU SMC_PYRFU] Required for chromosome condensation and partitioning (By similarity). Binds single-stranded but not double-stranded DNA.[HAMAP-Rule:MF_01894] | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
SMC condensin complexes are central modulators of chromosome superstructure in all branches of life. Their SMC subunits form a long intramolecular coiled coil, which connects a constitutive "hinge" dimerization domain with an ATP-regulated "head" dimerization module. Here, we address the structural arrangement of the long coiled coils in SMC complexes. We unequivocally show that prokaryotic Smc-ScpAB, eukaryotic condensin, and possibly also cohesin form rod-like structures, with their coiled coils being closely juxtaposed and accurately anchored to the hinge. Upon ATP-induced binding of DNA to the hinge, however, Smc switches to a more open configuration. Our data suggest that a long-distance structural transition is transmitted from the Smc head domains to regulate Smc-ScpAB's association with DNA. These findings uncover a conserved architectural theme in SMC complexes, provide a mechanistic basis for Smc's dynamic engagement with chromosomes, and offer a molecular explanation for defects in Cornelia de Lange syndrome. | |||
Molecular Basis for SMC Rod Formation and Its Dissolution upon DNA Binding.,Soh YM, Burmann F, Shin HC, Oda T, Jin KS, Toseland CP, Kim C, Lee H, Kim SJ, Kong MS, Durand-Diebold ML, Kim YG, Kim HM, Lee NK, Sato M, Oh BH, Gruber S Mol Cell. 2015 Jan 22;57(2):290-303. doi: 10.1016/j.molcel.2014.11.023. Epub 2014, Dec 31. PMID:25557547<ref>PMID:25557547</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
[[Category: Oh | <div class="pdbe-citations 4rsj" style="background-color:#fffaf0;"></div> | ||
[[Category: | == References == | ||
[[Category: | <references/> | ||
__TOC__ | |||
</StructureSection> | |||
[[Category: Large Structures]] | |||
[[Category: Pyrococcus furiosus DSM 3638]] | |||
[[Category: Oh BH]] | |||
[[Category: Shin HC]] | |||
[[Category: Soh YM]] |
Latest revision as of 20:54, 20 September 2023
Pyrococcus furiosus Smc hinge domain with an extended coiled coilPyrococcus furiosus Smc hinge domain with an extended coiled coil
Structural highlights
FunctionSMC_PYRFU Required for chromosome condensation and partitioning (By similarity). Binds single-stranded but not double-stranded DNA.[HAMAP-Rule:MF_01894] Publication Abstract from PubMedSMC condensin complexes are central modulators of chromosome superstructure in all branches of life. Their SMC subunits form a long intramolecular coiled coil, which connects a constitutive "hinge" dimerization domain with an ATP-regulated "head" dimerization module. Here, we address the structural arrangement of the long coiled coils in SMC complexes. We unequivocally show that prokaryotic Smc-ScpAB, eukaryotic condensin, and possibly also cohesin form rod-like structures, with their coiled coils being closely juxtaposed and accurately anchored to the hinge. Upon ATP-induced binding of DNA to the hinge, however, Smc switches to a more open configuration. Our data suggest that a long-distance structural transition is transmitted from the Smc head domains to regulate Smc-ScpAB's association with DNA. These findings uncover a conserved architectural theme in SMC complexes, provide a mechanistic basis for Smc's dynamic engagement with chromosomes, and offer a molecular explanation for defects in Cornelia de Lange syndrome. Molecular Basis for SMC Rod Formation and Its Dissolution upon DNA Binding.,Soh YM, Burmann F, Shin HC, Oda T, Jin KS, Toseland CP, Kim C, Lee H, Kim SJ, Kong MS, Durand-Diebold ML, Kim YG, Kim HM, Lee NK, Sato M, Oh BH, Gruber S Mol Cell. 2015 Jan 22;57(2):290-303. doi: 10.1016/j.molcel.2014.11.023. Epub 2014, Dec 31. PMID:25557547[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|