4lof: Difference between revisions

New page: '''Unreleased structure''' The entry 4lof is ON HOLD Authors: Wallentine, B.D., Wang, Y., Luecke, H. Description: Human p53 Core Domain Mutant V157F/N235K/N239Y
 
No edit summary
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Unreleased structure'''


The entry 4lof is ON HOLD
==Human p53 Core Domain Mutant V157F/N235K/N239Y==
<StructureSection load='4lof' size='340' side='right'caption='[[4lof]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[4lof]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. This structure supersedes the now removed PDB entry [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=2qvq 2qvq]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4LOF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4LOF FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4lof FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4lof OCA], [https://pdbe.org/4lof PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4lof RCSB], [https://www.ebi.ac.uk/pdbsum/4lof PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4lof ProSAT]</span></td></tr>
</table>
== Disease ==
[https://www.uniprot.org/uniprot/P53_HUMAN P53_HUMAN] Note=TP53 is found in increased amounts in a wide variety of transformed cells. TP53 is frequently mutated or inactivated in about 60% of cancers. TP53 defects are found in Barrett metaplasia a condition in which the normally stratified squamous epithelium of the lower esophagus is replaced by a metaplastic columnar epithelium. The condition develops as a complication in approximately 10% of patients with chronic gastroesophageal reflux disease and predisposes to the development of esophageal adenocarcinoma.  Defects in TP53 are a cause of esophageal cancer (ESCR) [MIM:[https://omim.org/entry/133239 133239].  Defects in TP53 are a cause of Li-Fraumeni syndrome (LFS) [MIM:[https://omim.org/entry/151623 151623]. LFS is an autosomal dominant familial cancer syndrome that in its classic form is defined by the existence of a proband affected by a sarcoma before 45 years with a first degree relative affected by any tumor before 45 years and another first degree relative with any tumor before 45 years or a sarcoma at any age. Other clinical definitions for LFS have been proposed (PubMed:8118819 and PubMed:8718514) and called Li-Fraumeni like syndrome (LFL). In these families affected relatives develop a diverse set of malignancies at unusually early ages. Four types of cancers account for 80% of tumors occurring in TP53 germline mutation carriers: breast cancers, soft tissue and bone sarcomas, brain tumors (astrocytomas) and adrenocortical carcinomas. Less frequent tumors include choroid plexus carcinoma or papilloma before the age of 15, rhabdomyosarcoma before the age of 5, leukemia, Wilms tumor, malignant phyllodes tumor, colorectal and gastric cancers.<ref>PMID:10570149</ref> <ref>PMID:1933902</ref> <ref>PMID:1978757</ref> <ref>PMID:2259385</ref> <ref>PMID:1737852</ref> <ref>PMID:1565144</ref> <ref>PMID:7887414</ref> <ref>PMID:8825920</ref> <ref>PMID:9452042</ref> <ref>PMID:10484981</ref>  Defects in TP53 are involved in head and neck squamous cell carcinomas (HNSCC) [MIM:[https://omim.org/entry/275355 275355]; also known as squamous cell carcinoma of the head and neck.  Defects in TP53 are a cause of lung cancer (LNCR) [MIM:[https://omim.org/entry/211980 211980]. LNCR is a common malignancy affecting tissues of the lung. The most common form of lung cancer is non-small cell lung cancer (NSCLC) that can be divided into 3 major histologic subtypes: squamous cell carcinoma, adenocarcinoma, and large cell lung cancer. NSCLC is often diagnosed at an advanced stage and has a poor prognosis.  Defects in TP53 are a cause of choroid plexus papilloma (CPLPA) [MIM:[https://omim.org/entry/260500 260500]. Choroid plexus papilloma is a slow-growing benign tumor of the choroid plexus that often invades the leptomeninges. In children it is usually in a lateral ventricle but in adults it is more often in the fourth ventricle. Hydrocephalus is common, either from obstruction or from tumor secretion of cerebrospinal fluid. If it undergoes malignant transformation it is called a choroid plexus carcinoma. Primary choroid plexus tumors are rare and usually occur in early childhood.<ref>PMID:12085209</ref>  Defects in TP53 are a cause of adrenocortical carcinoma (ADCC) [MIM:[https://omim.org/entry/202300 202300]. ADCC is a rare childhood tumor of the adrenal cortex. It occurs with increased frequency in patients with the Beckwith-Wiedemann syndrome and is a component tumor in Li-Fraumeni syndrome.<ref>PMID:11481490</ref>  Defects in TP53 are the cause of susceptibility to basal cell carcinoma 7 (BCC7) [MIM:[https://omim.org/entry/614740 614740]. A common malignant skin neoplasm that typically appears on hair-bearing skin, most commonly on sun-exposed areas. It is slow growing and rarely metastasizes, but has potentialities for local invasion and destruction. It usually develops as a flat, firm, pale area that is small, raised, pink or red, translucent, shiny, and waxy, and the area may bleed following minor injury. Tumor size can vary from a few millimeters to several centimeters in diameter.<ref>PMID:21946351</ref>
== Function ==
[https://www.uniprot.org/uniprot/P53_HUMAN P53_HUMAN] Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type. Involved in cell cycle regulation as a trans-activator that acts to negatively regulate cell division by controlling a set of genes required for this process. One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression. In cooperation with mitochondrial PPIF is involved in activating oxidative stress-induced necrosis; te function is largely independent of transcription. Induces the transcription of long intergenic non-coding RNA p21 (lincRNA-p21) and lincRNA-Mkln1. LincRNA-p21 participates in TP53-dependent transcriptional repression leading to apoptosis and seem to have to effect on cell-cycle regulation. Implicated in Notch signaling cross-over. Prevents CDK7 kinase activity when associated to CAK complex in response to DNA damage, thus stopping cell cycle progression. Isoform 2 enhances the transactivation activity of isoform 1 from some but not all TP53-inducible promoters. Isoform 4 suppresses transactivation activity and impairs growth suppression mediated by isoform 1. Isoform 7 inhibits isoform 1-mediated apoptosis.<ref>PMID:9840937</ref> <ref>PMID:11025664</ref> <ref>PMID:12810724</ref> <ref>PMID:15186775</ref> <ref>PMID:15340061</ref> <ref>PMID:17317671</ref> <ref>PMID:17349958</ref> <ref>PMID:19556538</ref> <ref>PMID:20673990</ref> <ref>PMID:20959462</ref> <ref>PMID:22726440</ref>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
To gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53, X-ray crystallographic structures of four p53 core-domain variants were determined. These include an oncogenic mutant, V157F, two single-site suppressor mutants, N235K and N239Y, and the rescued cancer mutant V157F/N235K/N239Y. The V157F mutation substitutes a smaller hydrophobic valine with a larger hydrophobic phenylalanine within strand S4 of the hydrophobic core. The structure of this cancer mutant shows no gross structural changes in the overall fold of the p53 core domain, only minor rearrangements of side chains within the hydrophobic core of the protein. Based on biochemical analysis, these small local perturbations induce instability in the protein, increasing the free energy by 3.6 kcal mol(-1) (15.1 kJ mol(-1)). Further biochemical evidence shows that each suppressor mutation, N235K or N239Y, acts individually to restore thermodynamic stability to V157F and that both together are more effective than either alone. All rescued mutants were found to have wild-type DNA-binding activity when assessed at a permissive temperature, thus pointing to thermodynamic stability as the critical underlying variable. Interestingly, thermodynamic analysis shows that while N239Y demonstrates stabilization of the wild-type p53 core domain, N235K does not. These observations suggest distinct structural mechanisms of rescue. A new salt bridge between Lys235 and Glu198, found in both the N235K and rescued cancer mutant structures, suggests a rescue mechanism that relies on stabilizing the beta-sandwich scaffold. On the other hand, the substitution N239Y creates an advantageous hydrophobic contact between the aromatic ring of this tyrosine and the adjacent Leu137. Surprisingly, the rescued cancer mutant shows much larger structural deviations than the cancer mutant alone when compared with wild-type p53. These suppressor mutations appear to rescue p53 function by creating novel intradomain interactions that stabilize the core domain, allowing compensation for the destabilizing V157F mutation.


Authors: Wallentine, B.D., Wang, Y., Luecke, H.
Structures of oncogenic, suppressor and rescued p53 core-domain variants: mechanisms of mutant p53 rescue.,Wallentine BD, Wang Y, Tretyachenko-Ladokhina V, Tan M, Senear DF, Luecke H Acta Crystallogr D Biol Crystallogr. 2013 Oct;69(Pt 10):2146-56. doi:, 10.1107/S0907444913020830. Epub 2013 Sep 20. PMID:24100332<ref>PMID:24100332</ref>


Description: Human p53 Core Domain Mutant V157F/N235K/N239Y
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 4lof" style="background-color:#fffaf0;"></div>
 
==See Also==
*[[P53 3D structures|P53 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Luecke H]]
[[Category: Wallentine BD]]
[[Category: Wang Y]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA