4l1u: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{STRUCTURE_4l1u|  PDB=4l1u  |  SCENE=  }}
===Crystal Structure of Human Rtf1 Plus3 Domain in Complex with Spt5 CTR Phosphopeptide===


==Function==
==Crystal Structure of Human Rtf1 Plus3 Domain in Complex with Spt5 CTR Phosphopeptide==
[[http://www.uniprot.org/uniprot/RTF1_HUMAN RTF1_HUMAN]] Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both indepentently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of MLL1; it promotes leukemogenesis though association with MLL-rearranged oncoproteins, such as MLL-MLLT3/AF9 and MLL-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Binds single-stranded DNA. Required for maximal induction of heat-shock genes. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of a SET1 complex (By similarity).<ref>PMID:19345177</ref> <ref>PMID:20178742</ref> [[http://www.uniprot.org/uniprot/SPT5H_HUMAN SPT5H_HUMAN]] Component of the DRB sensitivity-inducing factor complex (DSIF complex), which regulates mRNA processing and transcription elongation by RNA polymerase II. DSIF positively regulates mRNA capping by stimulating the mRNA guanylyltransferase activity of RNGTT/CAP1A. DSIF also acts cooperatively with the negative elongation factor complex (NELF complex) to enhance transcriptional pausing at sites proximal to the promoter. Transcriptional pausing may facilitate the assembly of an elongation competent RNA polymerase II complex. DSIF and NELF promote pausing by inhibition of the transcription elongation factor TFIIS/S-II. TFIIS/S-II binds to RNA polymerase II at transcription pause sites and stimulates the weak intrinsic nuclease activity of the enzyme. Cleavage of blocked transcripts by RNA polymerase II promotes the resumption of transcription from the new 3' terminus and may allow repeated attempts at transcription through natural pause sites. DSIF can also positively regulate transcriptional elongation and is required for the efficient activation of transcriptional elongation by the HIV-1 nuclear transcriptional activator, Tat. DSIF acts to suppress transcriptional pausing in transcripts derived from the HIV-1 LTR and blocks premature release of HIV-1 transcripts at terminator sequences.<ref>PMID:9450929</ref> <ref>PMID:9514752</ref> <ref>PMID:9857195</ref> <ref>PMID:10199401</ref> <ref>PMID:10393184</ref> <ref>PMID:10421630</ref> <ref>PMID:10075709</ref> <ref>PMID:10454543</ref> <ref>PMID:10912001</ref> <ref>PMID:10757782</ref> <ref>PMID:11112772</ref> <ref>PMID:11553615</ref> <ref>PMID:11809800</ref> <ref>PMID:12653964</ref> <ref>PMID:12718890</ref> <ref>PMID:15380072</ref> <ref>PMID:14701750</ref> <ref>PMID:15136722</ref> <ref>PMID:16214896</ref> 
<StructureSection load='4l1u' size='340' side='right'caption='[[4l1u]], [[Resolution|resolution]] 2.42&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[4l1u]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4L1U OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4L1U FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.424&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=TPO:PHOSPHOTHREONINE'>TPO</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4l1u FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4l1u OCA], [https://pdbe.org/4l1u PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4l1u RCSB], [https://www.ebi.ac.uk/pdbsum/4l1u PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4l1u ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/RTF1_HUMAN RTF1_HUMAN] Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both indepentently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of MLL1; it promotes leukemogenesis though association with MLL-rearranged oncoproteins, such as MLL-MLLT3/AF9 and MLL-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Binds single-stranded DNA. Required for maximal induction of heat-shock genes. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of a SET1 complex (By similarity).<ref>PMID:19345177</ref> <ref>PMID:20178742</ref>  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Polymerase associated factor 1 complex (Paf1C) broadly influences gene expression by regulating chromatin structure and the recruitment of RNA-processing factors during transcription elongation. The Plus3 domain of the Rtf1 subunit mediates Paf1C recruitment to genes by binding a repeating domain within the elongation factor Spt5 (suppressor of Ty). Here we provide a molecular description of this interaction by reporting the structure of human Rtf1 Plus3 in complex with a phosphorylated Spt5 repeat. We find that Spt5 binding is mediated by an extended surface containing phosphothreonine recognition and hydrophobic interfaces that interact with residues outside the Spt5 motif. Changes within these interfaces diminish binding of Spt5 in vitro and chromatin localization of Rtf1 in vivo. The structure reveals the basis for recognition of the repeat motif of Spt5, a key player in the recruitment of gene regulatory factors to RNA polymerase II.


==About this Structure==
Structural basis for Spt5-mediated recruitment of the Paf1 complex to chromatin.,Wier AD, Mayekar MK, Heroux A, Arndt KM, Vandemark AP Proc Natl Acad Sci U S A. 2013 Oct 7. PMID:24101474<ref>PMID:24101474</ref>
[[4l1u]] is a 10 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4L1U OCA].


==Reference==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
<references group="xtra"/><references/>
</div>
<div class="pdbe-citations 4l1u" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Heroux, A.]]
[[Category: Large Structures]]
[[Category: VanDemark, A P.]]
[[Category: Heroux A]]
[[Category: Wier, A D.]]
[[Category: VanDemark AP]]
[[Category: Chromatin]]
[[Category: Wier AD]]
[[Category: Orf association region]]
[[Category: Paf1 complex]]
[[Category: Peptide binding protein]]
[[Category: Plus3]]
[[Category: Rtf1]]
[[Category: Spt5 ctr binding]]
[[Category: Transcription]]
[[Category: Transcription-peptide complex]]
[[Category: Tutor]]

Latest revision as of 19:09, 20 September 2023

Crystal Structure of Human Rtf1 Plus3 Domain in Complex with Spt5 CTR PhosphopeptideCrystal Structure of Human Rtf1 Plus3 Domain in Complex with Spt5 CTR Phosphopeptide

Structural highlights

4l1u is a 10 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.424Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RTF1_HUMAN Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both indepentently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of MLL1; it promotes leukemogenesis though association with MLL-rearranged oncoproteins, such as MLL-MLLT3/AF9 and MLL-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Binds single-stranded DNA. Required for maximal induction of heat-shock genes. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of a SET1 complex (By similarity).[1] [2]

Publication Abstract from PubMed

Polymerase associated factor 1 complex (Paf1C) broadly influences gene expression by regulating chromatin structure and the recruitment of RNA-processing factors during transcription elongation. The Plus3 domain of the Rtf1 subunit mediates Paf1C recruitment to genes by binding a repeating domain within the elongation factor Spt5 (suppressor of Ty). Here we provide a molecular description of this interaction by reporting the structure of human Rtf1 Plus3 in complex with a phosphorylated Spt5 repeat. We find that Spt5 binding is mediated by an extended surface containing phosphothreonine recognition and hydrophobic interfaces that interact with residues outside the Spt5 motif. Changes within these interfaces diminish binding of Spt5 in vitro and chromatin localization of Rtf1 in vivo. The structure reveals the basis for recognition of the repeat motif of Spt5, a key player in the recruitment of gene regulatory factors to RNA polymerase II.

Structural basis for Spt5-mediated recruitment of the Paf1 complex to chromatin.,Wier AD, Mayekar MK, Heroux A, Arndt KM, Vandemark AP Proc Natl Acad Sci U S A. 2013 Oct 7. PMID:24101474[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Ding L, Paszkowski-Rogacz M, Nitzsche A, Slabicki MM, Heninger AK, de Vries I, Kittler R, Junqueira M, Shevchenko A, Schulz H, Hubner N, Doss MX, Sachinidis A, Hescheler J, Iacone R, Anastassiadis K, Stewart AF, Pisabarro MT, Caldarelli A, Poser I, Theis M, Buchholz F. A genome-scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity. Cell Stem Cell. 2009 May 8;4(5):403-15. doi: 10.1016/j.stem.2009.03.009. Epub, 2009 Apr 2. PMID:19345177 doi:10.1016/j.stem.2009.03.009
  2. Kim J, Guermah M, Roeder RG. The human PAF1 complex acts in chromatin transcription elongation both independently and cooperatively with SII/TFIIS. Cell. 2010 Feb 19;140(4):491-503. doi: 10.1016/j.cell.2009.12.050. PMID:20178742 doi:10.1016/j.cell.2009.12.050
  3. Wier AD, Mayekar MK, Heroux A, Arndt KM, Vandemark AP. Structural basis for Spt5-mediated recruitment of the Paf1 complex to chromatin. Proc Natl Acad Sci U S A. 2013 Oct 7. PMID:24101474 doi:http://dx.doi.org/10.1073/pnas.1314754110

4l1u, resolution 2.42Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA