4j88: Difference between revisions
m Protected "4j88" [edit=sysop:move=sysop] |
No edit summary |
||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Dark-state structure of sfGFP containing the unnatural amino acid p-azido-phenylalanine at residue 66== | |||
<StructureSection load='4j88' size='340' side='right'caption='[[4j88]], [[Resolution|resolution]] 2.08Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[4j88]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Aequorea_victoria Aequorea victoria]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4J88 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4J88 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.08Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CQ1:[(4Z)-2-[(1R,2R)-1-AMINO-2-HYDROXYPROPYL]-4-(4-AZIDOBENZYLIDENE)-5-OXO-4,5-DIHYDRO-1H-IMIDAZOL-1-YL]ACETIC+ACID'>CQ1</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=TRS:2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>TRS</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4j88 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4j88 OCA], [https://pdbe.org/4j88 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4j88 RCSB], [https://www.ebi.ac.uk/pdbsum/4j88 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4j88 ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/GFP_AEQVI GFP_AEQVI] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin. | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Expanding the genetic code opens new avenues to modulate protein function in real time. By genetically incorporating photoreactive phenyl azide, the fluorescent properties of green fluorescent protein (GFP) can be modulated by light. Depending on the residue in GFP programmed to incorporate the phenyl azide, different effects on function and photochemical pathways are observed. | |||
Different Photochemical Events of a Genetically Encoded Phenyl Azide Define and Modulate GFP Fluorescence.,Reddington SC, Rizkallah PJ, Watson PD, Pearson R, Tippmann EM, Jones DD Angew Chem Int Ed Engl. 2013 Apr 25. doi: 10.1002/anie.201301490. PMID:23620472<ref>PMID:23620472</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 4j88" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Green Fluorescent Protein 3D structures|Green Fluorescent Protein 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Aequorea victoria]] | |||
[[Category: Large Structures]] | |||
[[Category: Jones DD]] | |||
[[Category: Reddington SC]] | |||
[[Category: Rizkallah PJ]] | |||
[[Category: Tippmann EM]] |
Latest revision as of 18:37, 20 September 2023
Dark-state structure of sfGFP containing the unnatural amino acid p-azido-phenylalanine at residue 66Dark-state structure of sfGFP containing the unnatural amino acid p-azido-phenylalanine at residue 66
Structural highlights
FunctionGFP_AEQVI Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin. Publication Abstract from PubMedExpanding the genetic code opens new avenues to modulate protein function in real time. By genetically incorporating photoreactive phenyl azide, the fluorescent properties of green fluorescent protein (GFP) can be modulated by light. Depending on the residue in GFP programmed to incorporate the phenyl azide, different effects on function and photochemical pathways are observed. Different Photochemical Events of a Genetically Encoded Phenyl Azide Define and Modulate GFP Fluorescence.,Reddington SC, Rizkallah PJ, Watson PD, Pearson R, Tippmann EM, Jones DD Angew Chem Int Ed Engl. 2013 Apr 25. doi: 10.1002/anie.201301490. PMID:23620472[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|