4j5i: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Crystal structure of an alpha-ketoglutarate-dependent taurine dioxygenase from Mycobacterium smegmatis==
==Crystal structure of an alpha-ketoglutarate-dependent taurine dioxygenase from Mycobacterium smegmatis==
<StructureSection load='4j5i' size='340' side='right' caption='[[4j5i]], [[Resolution|resolution]] 2.60&Aring;' scene=''>
<StructureSection load='4j5i' size='340' side='right'caption='[[4j5i]], [[Resolution|resolution]] 2.60&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[4j5i]] is a 8 chain structure with sequence from [http://en.wikipedia.org/wiki/Mycobacterium_smegmatis_str._mc2_155 Mycobacterium smegmatis str. mc2 155]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4J5I OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4J5I FirstGlance]. <br>
<table><tr><td colspan='2'>[[4j5i]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Mycolicibacterium_smegmatis_MC2_155 Mycolicibacterium smegmatis MC2 155]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4J5I OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4J5I FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=FE:FE+(III)+ION'>FE</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.6&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3r1j|3r1j]], [[3swt|3swt]]</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=FE:FE+(III)+ION'>FE</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">MSMEG_3870 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=246196 Mycobacterium smegmatis str. MC2 155])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4j5i FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4j5i OCA], [https://pdbe.org/4j5i PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4j5i RCSB], [https://www.ebi.ac.uk/pdbsum/4j5i PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4j5i ProSAT]</span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Taurine_dioxygenase Taurine dioxygenase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.14.11.17 1.14.11.17] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4j5i FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4j5i OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4j5i RCSB], [http://www.ebi.ac.uk/pdbsum/4j5i PDBsum]</span></td></tr>
</table>
</table>
== Function ==
[https://www.uniprot.org/uniprot/A0QZ23_MYCS2 A0QZ23_MYCS2]
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
High-resolution three-dimensional structures of essential Mycobacterium tuberculosis (Mtb) proteins provide templates for TB drug design, but are available for only a small fraction of the Mtb proteome. Here we evaluate an intra-genus "homolog-rescue" strategy to increase the structural information available for TB drug discovery by using mycobacterial homologs with conserved active sites. Of 179 potential TB drug targets selected for x-ray structure determination, only 16 yielded a crystal structure. By adding 1675 homologs from nine other mycobacterial species to the pipeline, structures representing an additional 52 otherwise intractable targets were solved. To determine whether these homolog structures would be useful surrogates in TB drug design, we compared the active sites of 106 pairs of Mtb and non-TB mycobacterial (NTM) enzyme homologs with experimentally determined structures, using three metrics of active site similarity, including superposition of continuous pharmacophoric property distributions. Pair-wise structural comparisons revealed that 19/22 pairs with &gt;55% overall sequence identity had active site Calpha RMSD &lt;1 A, &gt;85% side chain identity, and &gt;/=80% PSAPF (similarity based on pharmacophoric properties) indicating highly conserved active site shape and chemistry. Applying these results to the 52 NTM structures described above, 41 shared &gt;55% sequence identity with the Mtb target, thus increasing the effective structural coverage of the 179 Mtb targets over three-fold (from 9% to 32%). The utility of these structures in TB drug design can be tested by designing inhibitors using the homolog structure and assaying the cognate Mtb enzyme; a promising test case, Mtb cytidylate kinase, is described. The homolog-rescue strategy evaluated here for TB is also generalizable to drug targets for other diseases.
Increasing the structural coverage of tuberculosis drug targets.,Baugh L, Phan I, Begley DW, Clifton MC, Armour B, Dranow DM, Taylor BM, Muruthi MM, Abendroth J, Fairman JW, Fox D 3rd, Dieterich SH, Staker BL, Gardberg AS, Choi R, Hewitt SN, Napuli AJ, Myers J, Barrett LK, Zhang Y, Ferrell M, Mundt E, Thompkins K, Tran N, Lyons-Abbott S, Abramov A, Sekar A, Serbzhinskiy D, Lorimer D, Buchko GW, Stacy R, Stewart LJ, Edwards TE, Van Voorhis WC, Myler PJ Tuberculosis (Edinb). 2014 Dec 19. pii: S1472-9792(14)20565-8. doi:, 10.1016/j.tube.2014.12.003. PMID:25613812<ref>PMID:25613812</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 4j5i" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
*[[Dioxygenase|Dioxygenase]]
*[[Dioxygenase 3D structures|Dioxygenase 3D structures]]
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Mycobacterium smegmatis str. mc2 155]]
[[Category: Large Structures]]
[[Category: Taurine dioxygenase]]
[[Category: Mycolicibacterium smegmatis MC2 155]]
[[Category: Structural genomic]]
[[Category: Iron-dependent]]
[[Category: Molecular oxygen]]
[[Category: National institute of allergy and infectious disease]]
[[Category: Niaid]]
[[Category: Oxidoreductase]]
[[Category: Ssgcid]]
[[Category: Taud]]

Latest revision as of 18:36, 20 September 2023

Crystal structure of an alpha-ketoglutarate-dependent taurine dioxygenase from Mycobacterium smegmatisCrystal structure of an alpha-ketoglutarate-dependent taurine dioxygenase from Mycobacterium smegmatis

Structural highlights

4j5i is a 8 chain structure with sequence from Mycolicibacterium smegmatis MC2 155. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.6Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

A0QZ23_MYCS2

Publication Abstract from PubMed

High-resolution three-dimensional structures of essential Mycobacterium tuberculosis (Mtb) proteins provide templates for TB drug design, but are available for only a small fraction of the Mtb proteome. Here we evaluate an intra-genus "homolog-rescue" strategy to increase the structural information available for TB drug discovery by using mycobacterial homologs with conserved active sites. Of 179 potential TB drug targets selected for x-ray structure determination, only 16 yielded a crystal structure. By adding 1675 homologs from nine other mycobacterial species to the pipeline, structures representing an additional 52 otherwise intractable targets were solved. To determine whether these homolog structures would be useful surrogates in TB drug design, we compared the active sites of 106 pairs of Mtb and non-TB mycobacterial (NTM) enzyme homologs with experimentally determined structures, using three metrics of active site similarity, including superposition of continuous pharmacophoric property distributions. Pair-wise structural comparisons revealed that 19/22 pairs with >55% overall sequence identity had active site Calpha RMSD <1 A, >85% side chain identity, and >/=80% PSAPF (similarity based on pharmacophoric properties) indicating highly conserved active site shape and chemistry. Applying these results to the 52 NTM structures described above, 41 shared >55% sequence identity with the Mtb target, thus increasing the effective structural coverage of the 179 Mtb targets over three-fold (from 9% to 32%). The utility of these structures in TB drug design can be tested by designing inhibitors using the homolog structure and assaying the cognate Mtb enzyme; a promising test case, Mtb cytidylate kinase, is described. The homolog-rescue strategy evaluated here for TB is also generalizable to drug targets for other diseases.

Increasing the structural coverage of tuberculosis drug targets.,Baugh L, Phan I, Begley DW, Clifton MC, Armour B, Dranow DM, Taylor BM, Muruthi MM, Abendroth J, Fairman JW, Fox D 3rd, Dieterich SH, Staker BL, Gardberg AS, Choi R, Hewitt SN, Napuli AJ, Myers J, Barrett LK, Zhang Y, Ferrell M, Mundt E, Thompkins K, Tran N, Lyons-Abbott S, Abramov A, Sekar A, Serbzhinskiy D, Lorimer D, Buchko GW, Stacy R, Stewart LJ, Edwards TE, Van Voorhis WC, Myler PJ Tuberculosis (Edinb). 2014 Dec 19. pii: S1472-9792(14)20565-8. doi:, 10.1016/j.tube.2014.12.003. PMID:25613812[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Baugh L, Phan I, Begley DW, Clifton MC, Armour B, Dranow DM, Taylor BM, Muruthi MM, Abendroth J, Fairman JW, Fox D 3rd, Dieterich SH, Staker BL, Gardberg AS, Choi R, Hewitt SN, Napuli AJ, Myers J, Barrett LK, Zhang Y, Ferrell M, Mundt E, Thompkins K, Tran N, Lyons-Abbott S, Abramov A, Sekar A, Serbzhinskiy D, Lorimer D, Buchko GW, Stacy R, Stewart LJ, Edwards TE, Van Voorhis WC, Myler PJ. Increasing the structural coverage of tuberculosis drug targets. Tuberculosis (Edinb). 2014 Dec 19. pii: S1472-9792(14)20565-8. doi:, 10.1016/j.tube.2014.12.003. PMID:25613812 doi:http://dx.doi.org/10.1016/j.tube.2014.12.003

4j5i, resolution 2.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA