2oc4: Difference between revisions
No edit summary |
No edit summary |
||
(7 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | ==Crystal structure of human purine nucleoside phosphorylase mutant H257D with Imm-H== | ||
[[http://www.uniprot.org/uniprot/PNPH_HUMAN PNPH_HUMAN | <StructureSection load='2oc4' size='340' side='right'caption='[[2oc4]], [[Resolution|resolution]] 2.59Å' scene=''> | ||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2oc4]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2OC4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2OC4 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.592Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=IMH:1,4-DIDEOXY-4-AZA-1-(S)-(9-DEAZAHYPOXANTHIN-9-YL)-D-RIBITOL'>IMH</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2oc4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2oc4 OCA], [https://pdbe.org/2oc4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2oc4 RCSB], [https://www.ebi.ac.uk/pdbsum/2oc4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2oc4 ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/PNPH_HUMAN PNPH_HUMAN] Defects in PNP are the cause of purine nucleoside phosphorylase deficiency (PNPD) [MIM:[https://omim.org/entry/613179 613179]. It leads to a severe T-cell immunodeficiency with neurologic disorder in children.<ref>PMID:3029074</ref> <ref>PMID:1384322</ref> <ref>PMID:8931706</ref> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/PNPH_HUMAN PNPH_HUMAN] The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta-(deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate.<ref>PMID:2104852</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/oc/2oc4_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2oc4 ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The X-ray crystal structures of human purine nucleoside phosphorylase (PNP) with bound inosine or transition-state analogues show His257 within hydrogen bonding distance of the 5'-hydroxyl. The mutants His257Phe, His257Gly, and His257Asp exhibited greatly decreased affinity for Immucillin-H (ImmH), binding this mimic of an early transition state as much as 370-fold (Km/Ki) less tightly than native PNP. In contrast, these mutants bound DADMe-ImmH, a mimic of a late transition state, nearly as well as the native enzyme. These results indicate that His257 serves an important role in the early stages of transition-state formation. Whereas mutation of His257 resulted in little variation in the PNP x DADMe-ImmH x SO4 structures, His257Phe x ImmH x PO4 showed distortion at the 5'-hydroxyl, indicating the importance of H-bonding in positioning this group during progression to the transition state. Binding isotope effect (BIE) and kinetic isotope effect (KIE) studies of the remote 5'-(3)H for the arsenolysis of inosine with native PNP revealed a BIE of 1.5% and an unexpectedly large intrinsic KIE of 4.6%. This result is interpreted as a moderate electronic distortion toward the transition state in the Michaelis complex with continued development of a similar distortion at the transition state. The mutants His257Phe, His257Gly, and His257Asp altered the 5'-(3)H intrinsic KIE to -3, -14, and 7%, respectively, while the BIEs contributed 2, 2, and -2%, respectively. These surprising results establish that forces in the Michaelis complex, reported by the BIEs, can be reversed or enhanced at the transition state. | |||
Neighboring group participation in the transition state of human purine nucleoside phosphorylase.,Murkin AS, Birck MR, Rinaldo-Matthis A, Shi W, Taylor EA, Almo SC, Schramm VL Biochemistry. 2007 May 1;46(17):5038-49. Epub 2007 Apr 4. PMID:17407325<ref>PMID:17407325</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2oc4" style="background-color:#fffaf0;"></div> | |||
== | ==See Also== | ||
*[[Purine nucleoside phosphorylase 3D structures|Purine nucleoside phosphorylase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Almo | [[Category: Almo SC]] | ||
[[Category: Rinaldo-Matthis | [[Category: Rinaldo-Matthis A]] | ||
[[Category: Schramm | [[Category: Schramm VL]] | ||