1g2o: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Seed}}
[[Image:1g2o.png|left|200px]]


<!--
==CRYSTAL STRUCTURE OF PURINE NUCLEOSIDE PHOSPHORYLASE FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH A TRANSITION-STATE INHIBITOR==
The line below this paragraph, containing "STRUCTURE_1g2o", creates the "Structure Box" on the page.
<StructureSection load='1g2o' size='340' side='right'caption='[[1g2o]], [[Resolution|resolution]] 1.75&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)  
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[1g2o]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Mycobacterium_tuberculosis Mycobacterium tuberculosis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1G2O OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1G2O FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.75&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=IMH:1,4-DIDEOXY-4-AZA-1-(S)-(9-DEAZAHYPOXANTHIN-9-YL)-D-RIBITOL'>IMH</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr>
{{STRUCTURE_1g2o|  PDB=1g2o  |  SCENE=  }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1g2o FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1g2o OCA], [https://pdbe.org/1g2o PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1g2o RCSB], [https://www.ebi.ac.uk/pdbsum/1g2o PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1g2o ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/PUNA_MYCTU PUNA_MYCTU] The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta-(deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate. Cleaves guanosine and inosine (By similarity).
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/g2/1g2o_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1g2o ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
A structural genomics comparison of purine nucleoside phosphorylases (PNPs) indicated that the enzyme encoded by Mycobacterium tuberculosis (TB-PNP) resembles the mammalian trimeric structure rather than the bacterial hexameric PNPs. The crystal structure of M. tuberculosis PNP in complex with the transition-state analogue immucillin-H (ImmH) and inorganic phosphate was solved at 1.75 A resolution and confirms the trimeric structure. Binding of the inhibitor occurs independently at the three catalytic sites, unlike mammalian PNPs which demonstrate negative cooperativity in ImmH binding. Reduced subunit interface contacts for TB-PNP, compared to the mammalian enzymes, correlate with the loss of the cooperative inhibitor binding. Mammalian and TB-PNPs both exhibit slow-onset inhibition and picomolar dissociation constants for ImmH. The structure supports a catalytic mechanism of reactant destabilization by neighboring group electrostatic interactions, transition-state stabilization, and leaving group activation. Despite an overall amino acid sequence identity of 33% between bovine and TB-PNPs and almost complete conservation in active site residues, one catalytic site difference suggests a strategy for the design of transition-state analogues with specificity for TB-PNP. The structure of TB-PNP was also solved to 2.0 A with 9-deazahypoxanthine (9dHX), iminoribitol (IR), and PO(4) to reconstruct the ImmH complex with its separate components. One subunit of the trimer has 9dHX, IR, and PO(4) bound, while the remaining two subunits contain only 9dHX. In the filled subunit, 9dHX retains the contacts found in the ImmH complex. However, the region of IR that corresponds to the oxocarbenium ion is translocated in the direction of the reaction coordinate, and the nucleophilic phosphate rotates away from the IR group. Loose packing of the pieces of ImmH in the catalytic site establishes that covalent connectivity in ImmH is required to achieve the tightly bound complex.


===CRYSTAL STRUCTURE OF PURINE NUCLEOSIDE PHOSPHORYLASE FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH A TRANSITION-STATE INHIBITOR===
Structures of purine nucleoside phosphorylase from Mycobacterium tuberculosis in complexes with immucillin-H and its pieces.,Shi W, Basso LA, Santos DS, Tyler PC, Furneaux RH, Blanchard JS, Almo SC, Schramm VL Biochemistry. 2001 Jul 27;40(28):8204-15. PMID:11444966<ref>PMID:11444966</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1g2o" style="background-color:#fffaf0;"></div>


<!--
==See Also==
The line below this paragraph, {{ABSTRACT_PUBMED_11444966}}, adds the Publication Abstract to the page
*[[Purine nucleoside phosphorylase 3D structures|Purine nucleoside phosphorylase 3D structures]]
(as it appears on PubMed at http://www.pubmed.gov), where 11444966 is the PubMed ID number.
== References ==
-->
<references/>
{{ABSTRACT_PUBMED_11444966}}
__TOC__
 
</StructureSection>
==About this Structure==
[[Category: Large Structures]]
1G2O is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Mycobacterium_tuberculosis Mycobacterium tuberculosis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1G2O OCA].
 
==Reference==
Structures of purine nucleoside phosphorylase from Mycobacterium tuberculosis in complexes with immucillin-H and its pieces., Shi W, Basso LA, Santos DS, Tyler PC, Furneaux RH, Blanchard JS, Almo SC, Schramm VL, Biochemistry. 2001 Jul 27;40(28):8204-15. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/11444966 11444966]
[[Category: Mycobacterium tuberculosis]]
[[Category: Mycobacterium tuberculosis]]
[[Category: Purine-nucleoside phosphorylase]]
[[Category: Almo SC]]
[[Category: Single protein]]
[[Category: Basso LA]]
[[Category: Almo, S C.]]
[[Category: Blanchard JS]]
[[Category: Basso, L A.]]
[[Category: Furneaux RH]]
[[Category: Blanchard, J S.]]
[[Category: Schramm VL]]
[[Category: Furneaux, R H.]]
[[Category: Shi W]]
[[Category: Schramm, V L.]]
[[Category: Tyler PC]]
[[Category: Shi, W.]]
[[Category: Tyler, P C.]]
[[Category: Transition-state complex]]
[[Category: Trimer]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Tue Jul  1 04:19:20 2008''

Latest revision as of 17:50, 20 September 2023

CRYSTAL STRUCTURE OF PURINE NUCLEOSIDE PHOSPHORYLASE FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH A TRANSITION-STATE INHIBITORCRYSTAL STRUCTURE OF PURINE NUCLEOSIDE PHOSPHORYLASE FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH A TRANSITION-STATE INHIBITOR

Structural highlights

1g2o is a 3 chain structure with sequence from Mycobacterium tuberculosis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.75Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PUNA_MYCTU The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta-(deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate. Cleaves guanosine and inosine (By similarity).

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

A structural genomics comparison of purine nucleoside phosphorylases (PNPs) indicated that the enzyme encoded by Mycobacterium tuberculosis (TB-PNP) resembles the mammalian trimeric structure rather than the bacterial hexameric PNPs. The crystal structure of M. tuberculosis PNP in complex with the transition-state analogue immucillin-H (ImmH) and inorganic phosphate was solved at 1.75 A resolution and confirms the trimeric structure. Binding of the inhibitor occurs independently at the three catalytic sites, unlike mammalian PNPs which demonstrate negative cooperativity in ImmH binding. Reduced subunit interface contacts for TB-PNP, compared to the mammalian enzymes, correlate with the loss of the cooperative inhibitor binding. Mammalian and TB-PNPs both exhibit slow-onset inhibition and picomolar dissociation constants for ImmH. The structure supports a catalytic mechanism of reactant destabilization by neighboring group electrostatic interactions, transition-state stabilization, and leaving group activation. Despite an overall amino acid sequence identity of 33% between bovine and TB-PNPs and almost complete conservation in active site residues, one catalytic site difference suggests a strategy for the design of transition-state analogues with specificity for TB-PNP. The structure of TB-PNP was also solved to 2.0 A with 9-deazahypoxanthine (9dHX), iminoribitol (IR), and PO(4) to reconstruct the ImmH complex with its separate components. One subunit of the trimer has 9dHX, IR, and PO(4) bound, while the remaining two subunits contain only 9dHX. In the filled subunit, 9dHX retains the contacts found in the ImmH complex. However, the region of IR that corresponds to the oxocarbenium ion is translocated in the direction of the reaction coordinate, and the nucleophilic phosphate rotates away from the IR group. Loose packing of the pieces of ImmH in the catalytic site establishes that covalent connectivity in ImmH is required to achieve the tightly bound complex.

Structures of purine nucleoside phosphorylase from Mycobacterium tuberculosis in complexes with immucillin-H and its pieces.,Shi W, Basso LA, Santos DS, Tyler PC, Furneaux RH, Blanchard JS, Almo SC, Schramm VL Biochemistry. 2001 Jul 27;40(28):8204-15. PMID:11444966[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Shi W, Basso LA, Santos DS, Tyler PC, Furneaux RH, Blanchard JS, Almo SC, Schramm VL. Structures of purine nucleoside phosphorylase from Mycobacterium tuberculosis in complexes with immucillin-H and its pieces. Biochemistry. 2001 Jul 27;40(28):8204-15. PMID:11444966

1g2o, resolution 1.75Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA