3ppi: Difference between revisions

No edit summary
No edit summary
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{STRUCTURE_3ppi|  PDB=3ppi  |  SCENE=  }}
===Crystal structure of 3-hydroxyacyl-CoA dehydrogenase type-2 from Mycobacterium avium===


==About this Structure==
==Crystal structure of 3-hydroxyacyl-CoA dehydrogenase type-2 from Mycobacterium avium==
[[3ppi]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Mycobacterium_avium Mycobacterium avium]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3PPI OCA].  
<StructureSection load='3ppi' size='340' side='right'caption='[[3ppi]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
[[Category: Mycobacterium avium]]
== Structural highlights ==
[[Category: SSGCID, Seattle Structural Genomics Center for Infectious Disease.]]
<table><tr><td colspan='2'>[[3ppi]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Mycobacterium_avium_104 Mycobacterium avium 104]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3PPI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3PPI FirstGlance]. <br>
[[Category: 3-hydroxyacyl-coa dehydrogenase type-2]]
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2&#8491;</td></tr>
[[Category: Dehydrogenase]]
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
[[Category: Mycobacterium avium]]
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3ppi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ppi OCA], [https://pdbe.org/3ppi PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3ppi RCSB], [https://www.ebi.ac.uk/pdbsum/3ppi PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3ppi ProSAT]</span></td></tr>
[[Category: Oxidoreductase]]
</table>
[[Category: Seattle structural genomics center for infectious disease]]
== Function ==
[[Category: Ssgcid]]
[https://www.uniprot.org/uniprot/A0A0H3A4S5_MYCA1 A0A0H3A4S5_MYCA1]  
[[Category: Structural genomic]]
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
High-resolution three-dimensional structures of essential Mycobacterium tuberculosis (Mtb) proteins provide templates for TB drug design, but are available for only a small fraction of the Mtb proteome. Here we evaluate an intra-genus "homolog-rescue" strategy to increase the structural information available for TB drug discovery by using mycobacterial homologs with conserved active sites. Of 179 potential TB drug targets selected for x-ray structure determination, only 16 yielded a crystal structure. By adding 1675 homologs from nine other mycobacterial species to the pipeline, structures representing an additional 52 otherwise intractable targets were solved. To determine whether these homolog structures would be useful surrogates in TB drug design, we compared the active sites of 106 pairs of Mtb and non-TB mycobacterial (NTM) enzyme homologs with experimentally determined structures, using three metrics of active site similarity, including superposition of continuous pharmacophoric property distributions. Pair-wise structural comparisons revealed that 19/22 pairs with &gt;55% overall sequence identity had active site Calpha RMSD &lt;1 A, &gt;85% side chain identity, and &gt;/=80% PSAPF (similarity based on pharmacophoric properties) indicating highly conserved active site shape and chemistry. Applying these results to the 52 NTM structures described above, 41 shared &gt;55% sequence identity with the Mtb target, thus increasing the effective structural coverage of the 179 Mtb targets over three-fold (from 9% to 32%). The utility of these structures in TB drug design can be tested by designing inhibitors using the homolog structure and assaying the cognate Mtb enzyme; a promising test case, Mtb cytidylate kinase, is described. The homolog-rescue strategy evaluated here for TB is also generalizable to drug targets for other diseases.
 
Increasing the structural coverage of tuberculosis drug targets.,Baugh L, Phan I, Begley DW, Clifton MC, Armour B, Dranow DM, Taylor BM, Muruthi MM, Abendroth J, Fairman JW, Fox D 3rd, Dieterich SH, Staker BL, Gardberg AS, Choi R, Hewitt SN, Napuli AJ, Myers J, Barrett LK, Zhang Y, Ferrell M, Mundt E, Thompkins K, Tran N, Lyons-Abbott S, Abramov A, Sekar A, Serbzhinskiy D, Lorimer D, Buchko GW, Stacy R, Stewart LJ, Edwards TE, Van Voorhis WC, Myler PJ Tuberculosis (Edinb). 2014 Dec 19. pii: S1472-9792(14)20565-8. doi:, 10.1016/j.tube.2014.12.003. PMID:25613812<ref>PMID:25613812</ref>
 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 3ppi" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Large Structures]]
[[Category: Mycobacterium avium 104]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA