3jzu: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of Dipeptide Epimerase from Enterococcus faecalis V583 complexed with Mg and dipeptide L-Leu-L-Tyr== | ==Crystal structure of Dipeptide Epimerase from Enterococcus faecalis V583 complexed with Mg and dipeptide L-Leu-L-Tyr== | ||
<StructureSection load='3jzu' size='340' side='right' caption='[[3jzu]], [[Resolution|resolution]] 2.00Å' scene=''> | <StructureSection load='3jzu' size='340' side='right'caption='[[3jzu]], [[Resolution|resolution]] 2.00Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3jzu]] is a 8 chain structure with sequence from [ | <table><tr><td colspan='2'>[[3jzu]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Enterococcus_faecalis_V583 Enterococcus faecalis V583]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3JZU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3JZU FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> | ||
<tr id=' | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=LEU:LEUCINE'>LEU</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=TYR:TYROSINE'>TYR</scene></td></tr> | ||
< | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3jzu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3jzu OCA], [https://pdbe.org/3jzu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3jzu RCSB], [https://www.ebi.ac.uk/pdbsum/3jzu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3jzu ProSAT]</span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Function == | |||
[https://www.uniprot.org/uniprot/HYEP_ENTFA HYEP_ENTFA] Catalyzes the epimerization of L-Ile-L-Tyr to L-Ile-D-Tyr (in vitro). Catalyzes the epimerization of dipeptides, with a preference for substrates with a hydrophobic or basic amino acid in the first position, followed by an aromatic residue in the second position. Has epimerase activity with L-Ile-L-Tyr, L-Val-L-Tyr and L-Arg-L-Tyr (in vitro).<ref>PMID:22392983</ref> | |||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 35: | Line 36: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Enterococcus faecalis V583]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: | [[Category: Almo SC]] | ||
[[Category: Fedorov | [[Category: Fedorov AA]] | ||
[[Category: | [[Category: Fedorov EV]] | ||
[[Category: | [[Category: Gerlt JA]] | ||
[[Category: | [[Category: Imker HJ]] | ||
[[Category: | [[Category: Sakai A]] | ||
Latest revision as of 11:07, 6 September 2023
Crystal structure of Dipeptide Epimerase from Enterococcus faecalis V583 complexed with Mg and dipeptide L-Leu-L-TyrCrystal structure of Dipeptide Epimerase from Enterococcus faecalis V583 complexed with Mg and dipeptide L-Leu-L-Tyr
Structural highlights
FunctionHYEP_ENTFA Catalyzes the epimerization of L-Ile-L-Tyr to L-Ile-D-Tyr (in vitro). Catalyzes the epimerization of dipeptides, with a preference for substrates with a hydrophobic or basic amino acid in the first position, followed by an aromatic residue in the second position. Has epimerase activity with L-Ile-L-Tyr, L-Val-L-Tyr and L-Arg-L-Tyr (in vitro).[1] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe rapid advance in genome sequencing presents substantial challenges for protein functional assignment, with half or more of new protein sequences inferred from these genomes having uncertain assignments. The assignment of enzyme function in functionally diverse superfamilies represents a particular challenge, which we address through a combination of computational predictions, enzymology, and structural biology. Here we describe the results of a focused investigation of a group of enzymes in the enolase superfamily that are involved in epimerizing dipeptides. The first members of this group to be functionally characterized were Ala-Glu epimerases in Eschericiha coli and Bacillus subtilis, based on the operon context and enzymological studies; these enzymes are presumed to be involved in peptidoglycan recycling. We have subsequently studied more than 65 related enzymes by computational methods, including homology modeling and metabolite docking, which suggested that many would have divergent specificities;, i.e., they are likely to have different (unknown) biological roles. In addition to the Ala-Phe epimerase specificity reported previously, we describe the prediction and experimental verification of: (i) a new group of presumed Ala-Glu epimerases; (ii) several enzymes with specificity for hydrophobic dipeptides, including one from Cytophaga hutchinsonii that epimerizes D-Ala-D-Ala; and (iii) a small group of enzymes that epimerize cationic dipeptides. Crystal structures for certain of these enzymes further elucidate the structural basis of the specificities. The results highlight the potential of computational methods to guide experimental characterization of enzymes in an automated, large-scale fashion. Homology models guide discovery of diverse enzyme specificities among dipeptide epimerases in the enolase superfamily.,Lukk T, Sakai A, Kalyanaraman C, Brown SD, Imker HJ, Song L, Fedorov AA, Fedorov EV, Toro R, Hillerich B, Seidel R, Patskovsky Y, Vetting MW, Nair SK, Babbitt PC, Almo SC, Gerlt JA, Jacobson MP Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4122-7. Epub 2012 Mar 5. PMID:22392983[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|