3g4x: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Seed}}
[[Image:3g4x.png|left|200px]]


<!--
==Crystal Structure of NiSOD Y9F mutant==
The line below this paragraph, containing "STRUCTURE_3g4x", creates the "Structure Box" on the page.
<StructureSection load='3g4x' size='340' side='right'caption='[[3g4x]], [[Resolution|resolution]] 2.01&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)  
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[3g4x]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Streptomyces_coelicolor Streptomyces coelicolor]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3G4X OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3G4X FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.01&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=NI:NICKEL+(II)+ION'>NI</scene></td></tr>
{{STRUCTURE_3g4x|  PDB=3g4x  |  SCENE=  }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3g4x FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3g4x OCA], [https://pdbe.org/3g4x PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3g4x RCSB], [https://www.ebi.ac.uk/pdbsum/3g4x PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3g4x ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/SODN_STRCO SODN_STRCO]
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/g4/3g4x_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3g4x ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Superoxide dismutases rely on protein structural elements to adjust the redox potential of the metallocenter to an optimum value near 300 mV (vs NHE), to provide a source of protons for catalysis, and to control the access of anions to the active site. These aspects of the catalytic mechanism are examined herein for recombinant preparations of the nickel-dependent SOD (NiSOD) from Streptomyces coelicolor and for a series of mutants that affect a key tyrosine residue, Tyr9 (Y9F-, Y62F-, Y9F/Y62F-, and D3A-NiSOD). Structural aspects of the nickel sites are examined by a combination of EPR and X-ray absorption spectroscopies, and by single-crystal X-ray diffraction at approximately 1.9 A resolution in the case of Y9F- and D3A-NiSODs. The functional effects of the mutations are examined by kinetic studies employing pulse radiolytic generation of O2- and by redox titrations. These studies reveal that although the structure of the nickel center in NiSOD is unique, the ligand environment is designed to optimize the redox potential at 290 mV and results in the oxidation of 50% of the nickel centers in the oxidized hexamer. Kinetic investigations show that all of the mutant proteins have considerable activity. In the case of Y9F-NiSOD, the enzyme exhibits saturation behavior that is not observed in wild-type (WT) NiSOD and suggests that release of peroxide is inhibited. The crystal structure of Y9F-NiSOD reveals an anion binding site that is occupied by either Cl- or Br- and is located close to but not within bonding distance of the nickel center. The structure of D3A-NiSOD reveals that in addition to affecting the interaction between subunits, this mutation repositions Tyr9 and leads to altered chemistry with peroxide. Comparisons with Mn(SOD) and Fe(SOD) reveal that although different strategies for adjusting the redox potential and supply of protons are employed, NiSOD has evolved a similar strategy for controlling the access of anions to the active site.


===Crystal Structure of NiSOD Y9F mutant===
Role of conserved tyrosine residues in NiSOD catalysis: a case of convergent evolution.,Herbst RW, Guce A, Bryngelson PA, Higgins KA, Ryan KC, Cabelli DE, Garman SC, Maroney MJ Biochemistry. 2009 Apr 21;48(15):3354-69. PMID:19183068<ref>PMID:19183068</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 3g4x" style="background-color:#fffaf0;"></div>


<!--
==See Also==
The line below this paragraph, {{ABSTRACT_PUBMED_19183068}}, adds the Publication Abstract to the page
*[[Superoxide dismutase 3D structures|Superoxide dismutase 3D structures]]
(as it appears on PubMed at http://www.pubmed.gov), where 19183068 is the PubMed ID number.
== References ==
-->
<references/>
{{ABSTRACT_PUBMED_19183068}}
__TOC__
 
</StructureSection>
==About this Structure==
[[Category: Large Structures]]
3G4X is a 3 chains structure of sequences from [http://en.wikipedia.org/wiki/Streptomyces_coelicolor Streptomyces coelicolor]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3G4X OCA].
 
==Reference==
<ref group="xtra">PMID:19183068</ref><references group="xtra"/>
[[Category: Streptomyces coelicolor]]
[[Category: Streptomyces coelicolor]]
[[Category: Superoxide dismutase]]
[[Category: Bryngelson PA]]
[[Category: Bryngelson, P A.]]
[[Category: Cabelli DE]]
[[Category: Cabelli, D E.]]
[[Category: Garman SC]]
[[Category: Garman, S C.]]
[[Category: Guce AI]]
[[Category: Guce, A I.]]
[[Category: Herbst RW]]
[[Category: Herbst, R W.]]
[[Category: Higgins KA]]
[[Category: Higgins, K A.]]
[[Category: Maroney MJ]]
[[Category: Maroney, M J.]]
[[Category: Ryan KC]]
[[Category: Ryan, K C.]]
[[Category: Antioxidant]]
[[Category: Cytoplasm]]
[[Category: Hexamer]]
[[Category: Metal-binding]]
[[Category: Nickel]]
[[Category: Nisod]]
[[Category: Oxidoreductase]]
[[Category: Sod]]
[[Category: Superoxide dismutase]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Wed May  6 10:08:31 2009''

Latest revision as of 09:59, 6 September 2023

Crystal Structure of NiSOD Y9F mutantCrystal Structure of NiSOD Y9F mutant

Structural highlights

3g4x is a 3 chain structure with sequence from Streptomyces coelicolor. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.01Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

SODN_STRCO

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Superoxide dismutases rely on protein structural elements to adjust the redox potential of the metallocenter to an optimum value near 300 mV (vs NHE), to provide a source of protons for catalysis, and to control the access of anions to the active site. These aspects of the catalytic mechanism are examined herein for recombinant preparations of the nickel-dependent SOD (NiSOD) from Streptomyces coelicolor and for a series of mutants that affect a key tyrosine residue, Tyr9 (Y9F-, Y62F-, Y9F/Y62F-, and D3A-NiSOD). Structural aspects of the nickel sites are examined by a combination of EPR and X-ray absorption spectroscopies, and by single-crystal X-ray diffraction at approximately 1.9 A resolution in the case of Y9F- and D3A-NiSODs. The functional effects of the mutations are examined by kinetic studies employing pulse radiolytic generation of O2- and by redox titrations. These studies reveal that although the structure of the nickel center in NiSOD is unique, the ligand environment is designed to optimize the redox potential at 290 mV and results in the oxidation of 50% of the nickel centers in the oxidized hexamer. Kinetic investigations show that all of the mutant proteins have considerable activity. In the case of Y9F-NiSOD, the enzyme exhibits saturation behavior that is not observed in wild-type (WT) NiSOD and suggests that release of peroxide is inhibited. The crystal structure of Y9F-NiSOD reveals an anion binding site that is occupied by either Cl- or Br- and is located close to but not within bonding distance of the nickel center. The structure of D3A-NiSOD reveals that in addition to affecting the interaction between subunits, this mutation repositions Tyr9 and leads to altered chemistry with peroxide. Comparisons with Mn(SOD) and Fe(SOD) reveal that although different strategies for adjusting the redox potential and supply of protons are employed, NiSOD has evolved a similar strategy for controlling the access of anions to the active site.

Role of conserved tyrosine residues in NiSOD catalysis: a case of convergent evolution.,Herbst RW, Guce A, Bryngelson PA, Higgins KA, Ryan KC, Cabelli DE, Garman SC, Maroney MJ Biochemistry. 2009 Apr 21;48(15):3354-69. PMID:19183068[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Herbst RW, Guce A, Bryngelson PA, Higgins KA, Ryan KC, Cabelli DE, Garman SC, Maroney MJ. Role of conserved tyrosine residues in NiSOD catalysis: a case of convergent evolution. Biochemistry. 2009 Apr 21;48(15):3354-69. PMID:19183068 doi:10.1021/bi802029t

3g4x, resolution 2.01Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA