3eqb: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Seed}}
[[Image:3eqb.png|left|200px]]


<!--
==X-ray structure of the human mitogen-activated protein kinase kinase 1 (MEK1) in a complex with ligand and MgATP==
The line below this paragraph, containing "STRUCTURE_3eqb", creates the "Structure Box" on the page.
<StructureSection load='3eqb' size='340' side='right'caption='[[3eqb]], [[Resolution|resolution]] 2.62&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)  
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[3eqb]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3EQB OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3EQB FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.62&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=LUG:N-(5-{3,4-DIFLUORO-2-[(2-FLUORO-4-IODOPHENYL)AMINO]PHENYL}-1,3,4-OXADIAZOL-2-YL)ETHANE-1,2-DIAMINE'>LUG</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
{{STRUCTURE_3eqb|  PDB=3eqb  |  SCENE= }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3eqb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3eqb OCA], [https://pdbe.org/3eqb PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3eqb RCSB], [https://www.ebi.ac.uk/pdbsum/3eqb PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3eqb ProSAT]</span></td></tr>
</table>
== Disease ==
[https://www.uniprot.org/uniprot/MP2K1_HUMAN MP2K1_HUMAN] Defects in MAP2K1 are a cause of cardiofaciocutaneous syndrome (CFC syndrome) [MIM:[https://omim.org/entry/115150 115150]; also known as cardio-facio-cutaneous syndrome. CFC syndrome is characterized by a distinctive facial appearance, heart defects and mental retardation. Heart defects include pulmonic stenosis, atrial septal defects and hypertrophic cardiomyopathy. Some affected individuals present with ectodermal abnormalities such as sparse, friable hair, hyperkeratotic skin lesions and a generalized ichthyosis-like condition. Typical facial features are similar to Noonan syndrome. They include high forehead with bitemporal constriction, hypoplastic supraorbital ridges, downslanting palpebral fissures, a depressed nasal bridge, and posteriorly angulated ears with prominent helices. The inheritance of CFC syndrome is autosomal dominant.
== Function ==
[https://www.uniprot.org/uniprot/MP2K1_HUMAN MP2K1_HUMAN] Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Binding of extracellular ligands such as growth factors, cytokines and hormones to their cell-surface receptors activates RAS and this initiates RAF1 activation. RAF1 then further activates the dual-specificity protein kinases MAP2K1/MEK1 and MAP2K2/MEK2. Both MAP2K1/MEK1 and MAP2K2/MEK2 function specifically in the MAPK/ERK cascade, and catalyze the concomitant phosphorylation of a threonine and a tyrosine residue in a Thr-Glu-Tyr sequence located in the extracellular signal-regulated kinases MAPK3/ERK1 and MAPK1/ERK2, leading to their activation and further transduction of the signal within the MAPK/ERK cascade. Depending on the cellular context, this pathway mediates diverse biological functions such as cell growth, adhesion, survival and differentiation, predominantly through the regulation of transcription, metabolism and cytoskeletal rearrangements. One target of the MAPK/ERK cascade is peroxisome proliferator-activated receptor gamma (PPARG), a nuclear receptor that promotes differentiation and apoptosis. MAP2K1/MEK1 has been shown to export PPARG from the nucleus. The MAPK/ERK cascade is also involved in the regulation of endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC), as well as in the fragmentation of the Golgi apparatus during mitosis.<ref>PMID:14737111</ref> <ref>PMID:17101779</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/eq/3eqb_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3eqb ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
This paper reports a second generation MEK inhibitor. The previously reported potent and efficacious MEK inhibitor, PD-184352 (CI-1040), contains an integral hydroxamate moiety. This compound suffered from less than ideal solubility and metabolic stability. An oxadiazole moiety behaves as a bioisostere for the hydroxamate group, leading to a more metabolically stable and efficacious MEK inhibitor.


===X-ray structure of the human mitogen-activated protein kinase kinase 1 (MEK1) in a complex with ligand and MgATP===
2-Alkylamino- and alkoxy-substituted 2-amino-1,3,4-oxadiazoles-O-Alkyl benzohydroxamate esters replacements retain the desired inhibition and selectivity against MEK (MAP ERK kinase).,Warmus JS, Flamme C, Zhang LY, Barrett S, Bridges A, Chen H, Gowan R, Kaufman M, Sebolt-Leopold J, Leopold W, Merriman R, Ohren J, Pavlovsky A, Przybranowski S, Tecle H, Valik H, Whitehead C, Zhang E Bioorg Med Chem Lett. 2008 Dec 1;18(23):6171-4. Epub 2008 Oct 7. PMID:18951019<ref>PMID:18951019</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 3eqb" style="background-color:#fffaf0;"></div>


<!--
==See Also==
The line below this paragraph, {{ABSTRACT_PUBMED_18951019}}, adds the Publication Abstract to the page
*[[Mitogen-activated protein kinase kinase 3D structures|Mitogen-activated protein kinase kinase 3D structures]]
(as it appears on PubMed at http://www.pubmed.gov), where 18951019 is the PubMed ID number.
== References ==
-->
<references/>
{{ABSTRACT_PUBMED_18951019}}
__TOC__
 
</StructureSection>
==About this Structure==
3EQB is a 1 chain structure of sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3EQB OCA].
 
==Reference==
2-Alkylamino- and alkoxy-substituted 2-amino-1,3,4-oxadiazoles-O-Alkyl benzohydroxamate esters replacements retain the desired inhibition and selectivity against MEK (MAP ERK kinase)., Warmus JS, Flamme C, Zhang LY, Barrett S, Bridges A, Chen H, Gowan R, Kaufman M, Sebolt-Leopold J, Leopold W, Merriman R, Ohren J, Pavlovsky A, Przybranowski S, Tecle H, Valik H, Whitehead C, Zhang E, Bioorg Med Chem Lett. 2008 Oct 7. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/18951019 18951019]
 
4-anilino-5-carboxamido-2-pyridone derivatives as noncompetitive inhibitors of mitogen-activated protein kinase kinase., Spicer JA, Rewcastle GW, Kaufman MD, Black SL, Plummer MS, Denny WA, Quin J 3rd, Shahripour AB, Barrett SD, Whitehead CE, Milbank JB, Ohren JF, Gowan RC, Omer C, Camp HS, Esmaeil N, Moore K, Sebolt-Leopold JS, Pryzbranowski S, Merriman RL, Ortwine DF, Warmus JS, Flamme CM, Pavlovsky AG, Tecle H, J Med Chem. 2007 Oct 18;50(21):5090-102. Epub 2007 Sep 19. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/17880056 17880056]
 
Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition., Ohren JF, Chen H, Pavlovsky A, Whitehead C, Zhang E, Kuffa P, Yan C, McConnell P, Spessard C, Banotai C, Mueller WT, Delaney A, Omer C, Sebolt-Leopold J, Dudley DT, Leung IK, Flamme C, Warmus J, Kaufman M, Barrett S, Tecle H, Hasemann CA, Nat Struct Mol Biol. 2004 Dec;11(12):1192-7. Epub 2004 Nov 14. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/15543157 15543157]
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Mitogen-activated protein kinase kinase]]
[[Category: Large Structures]]
[[Category: Ohren, J F.]]
[[Category: Ohren JF]]
[[Category: Pavlovsky, A.]]
[[Category: Pavlovsky A]]
[[Category: Zhang, E.]]
[[Category: Zhang E]]
[[Category: Acetylation]]
[[Category: Atp-binding]]
[[Category: Disease mutation]]
[[Category: Kinase]]
[[Category: Ligand and mgatp]]
[[Category: Ligand co-complex]]
[[Category: Mitogen activated protein kinase kinase]]
[[Category: Non-competitive protein kinase inhibitor]]
[[Category: Nucleotide-binding]]
[[Category: Phosphoprotein]]
[[Category: Protein kinase structure]]
[[Category: Serine/threonine-protein kinase]]
[[Category: Signal transduction]]
[[Category: Ternary co-complex with kinase]]
[[Category: Transferase]]
[[Category: Tyrosine-protein kinase]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Wed Nov 26 20:08:01 2008''

Latest revision as of 09:31, 6 September 2023

X-ray structure of the human mitogen-activated protein kinase kinase 1 (MEK1) in a complex with ligand and MgATPX-ray structure of the human mitogen-activated protein kinase kinase 1 (MEK1) in a complex with ligand and MgATP

Structural highlights

3eqb is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.62Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

MP2K1_HUMAN Defects in MAP2K1 are a cause of cardiofaciocutaneous syndrome (CFC syndrome) [MIM:115150; also known as cardio-facio-cutaneous syndrome. CFC syndrome is characterized by a distinctive facial appearance, heart defects and mental retardation. Heart defects include pulmonic stenosis, atrial septal defects and hypertrophic cardiomyopathy. Some affected individuals present with ectodermal abnormalities such as sparse, friable hair, hyperkeratotic skin lesions and a generalized ichthyosis-like condition. Typical facial features are similar to Noonan syndrome. They include high forehead with bitemporal constriction, hypoplastic supraorbital ridges, downslanting palpebral fissures, a depressed nasal bridge, and posteriorly angulated ears with prominent helices. The inheritance of CFC syndrome is autosomal dominant.

Function

MP2K1_HUMAN Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Binding of extracellular ligands such as growth factors, cytokines and hormones to their cell-surface receptors activates RAS and this initiates RAF1 activation. RAF1 then further activates the dual-specificity protein kinases MAP2K1/MEK1 and MAP2K2/MEK2. Both MAP2K1/MEK1 and MAP2K2/MEK2 function specifically in the MAPK/ERK cascade, and catalyze the concomitant phosphorylation of a threonine and a tyrosine residue in a Thr-Glu-Tyr sequence located in the extracellular signal-regulated kinases MAPK3/ERK1 and MAPK1/ERK2, leading to their activation and further transduction of the signal within the MAPK/ERK cascade. Depending on the cellular context, this pathway mediates diverse biological functions such as cell growth, adhesion, survival and differentiation, predominantly through the regulation of transcription, metabolism and cytoskeletal rearrangements. One target of the MAPK/ERK cascade is peroxisome proliferator-activated receptor gamma (PPARG), a nuclear receptor that promotes differentiation and apoptosis. MAP2K1/MEK1 has been shown to export PPARG from the nucleus. The MAPK/ERK cascade is also involved in the regulation of endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC), as well as in the fragmentation of the Golgi apparatus during mitosis.[1] [2]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

This paper reports a second generation MEK inhibitor. The previously reported potent and efficacious MEK inhibitor, PD-184352 (CI-1040), contains an integral hydroxamate moiety. This compound suffered from less than ideal solubility and metabolic stability. An oxadiazole moiety behaves as a bioisostere for the hydroxamate group, leading to a more metabolically stable and efficacious MEK inhibitor.

2-Alkylamino- and alkoxy-substituted 2-amino-1,3,4-oxadiazoles-O-Alkyl benzohydroxamate esters replacements retain the desired inhibition and selectivity against MEK (MAP ERK kinase).,Warmus JS, Flamme C, Zhang LY, Barrett S, Bridges A, Chen H, Gowan R, Kaufman M, Sebolt-Leopold J, Leopold W, Merriman R, Ohren J, Pavlovsky A, Przybranowski S, Tecle H, Valik H, Whitehead C, Zhang E Bioorg Med Chem Lett. 2008 Dec 1;18(23):6171-4. Epub 2008 Oct 7. PMID:18951019[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Liu X, Yan S, Zhou T, Terada Y, Erikson RL. The MAP kinase pathway is required for entry into mitosis and cell survival. Oncogene. 2004 Jan 22;23(3):763-76. PMID:14737111 doi:10.1038/sj.onc.1207188
  2. Burgermeister E, Chuderland D, Hanoch T, Meyer M, Liscovitch M, Seger R. Interaction with MEK causes nuclear export and downregulation of peroxisome proliferator-activated receptor gamma. Mol Cell Biol. 2007 Feb;27(3):803-17. Epub 2006 Nov 13. PMID:17101779 doi:10.1128/MCB.00601-06
  3. Warmus JS, Flamme C, Zhang LY, Barrett S, Bridges A, Chen H, Gowan R, Kaufman M, Sebolt-Leopold J, Leopold W, Merriman R, Ohren J, Pavlovsky A, Przybranowski S, Tecle H, Valik H, Whitehead C, Zhang E. 2-Alkylamino- and alkoxy-substituted 2-amino-1,3,4-oxadiazoles-O-Alkyl benzohydroxamate esters replacements retain the desired inhibition and selectivity against MEK (MAP ERK kinase). Bioorg Med Chem Lett. 2008 Dec 1;18(23):6171-4. Epub 2008 Oct 7. PMID:18951019 doi:10.1016/j.bmcl.2008.10.015

3eqb, resolution 2.62Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA