5ibs: Difference between revisions
No edit summary |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
==Structure of E76Q, a Cancer-Associated Mutation of the Oncogenic Phosphatase SHP2== | ==Structure of E76Q, a Cancer-Associated Mutation of the Oncogenic Phosphatase SHP2== | ||
<StructureSection load='5ibs' size='340' side='right' caption='[[5ibs]], [[Resolution|resolution]] 2.32Å' scene=''> | <StructureSection load='5ibs' size='340' side='right'caption='[[5ibs]], [[Resolution|resolution]] 2.32Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[5ibs]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5IBS OCA]. For a <b>guided tour on the structure components</b> use [ | <table><tr><td colspan='2'>[[5ibs]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5IBS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5IBS FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.32Å</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5ibs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ibs OCA], [https://pdbe.org/5ibs PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5ibs RCSB], [https://www.ebi.ac.uk/pdbsum/5ibs PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5ibs ProSAT]</span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Disease == | == Disease == | ||
[ | [https://www.uniprot.org/uniprot/PTN11_HUMAN PTN11_HUMAN] Defects in PTPN11 are the cause of LEOPARD syndrome type 1 (LEOPARD1) [MIM:[https://omim.org/entry/151100 151100]. It is an autosomal dominant disorder allelic with Noonan syndrome. The acronym LEOPARD stands for lentigines, electrocardiographic conduction abnormalities, ocular hypertelorism, pulmonic stenosis, abnormalities of genitalia, retardation of growth, and deafness.<ref>PMID:12058348</ref> <ref>PMID:14961557</ref> <ref>PMID:15389709</ref> <ref>PMID:15520399</ref> <ref>PMID:15121796</ref> <ref>PMID:15690106</ref> <ref>PMID:16679933</ref> Defects in PTPN11 are the cause of Noonan syndrome type 1 (NS1) [MIM:[https://omim.org/entry/163950 163950]. Noonan syndrome (NS) is a disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. Some patients with Noonan syndrome type 1 develop multiple giant cell lesions of the jaw or other bony or soft tissues, which are classified as pigmented villomoduolar synovitis (PVNS) when occurring in the jaw or joints. Note=Mutations in PTPN11 account for more than 50% of the cases. Rarely, NS is associated with juvenile myelomonocytic leukemia (JMML). NS1 inheritance is autosomal dominant.<ref>PMID:11704759</ref> <ref>PMID:11992261</ref> <ref>PMID:12325025</ref> <ref>PMID:12161469</ref> <ref>PMID:12529711</ref> <ref>PMID:12634870</ref> <ref>PMID:12739139</ref> <ref>PMID:12960218</ref> <ref>PMID:12717436</ref> <ref>PMID:15384080</ref> <ref>PMID:15948193</ref> <ref>PMID:19020799</ref> Defects in PTPN11 are a cause of juvenile myelomonocytic leukemia (JMML) [MIM:[https://omim.org/entry/607785 607785]. JMML is a pediatric myelodysplastic syndrome that constitutes approximately 30% of childhood cases of myelodysplastic syndrome (MDS) and 2% of leukemia. It is characterized by leukocytosis with tissue infiltration and in vitro hypersensitivity of myeloid progenitors to granulocyte-macrophage colony stimulating factor.<ref>PMID:12717436</ref> Defects in PTPN11 are a cause of metachondromatosis (MC) [MIM:[https://omim.org/entry/156250 156250]. It is a skeletal disorder with radiologic fetarures of both multiple exostoses and Ollier disease, characterized by the presence of multiple enchondromas and osteochondroma-like lesions.<ref>PMID:20577567</ref> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/PTN11_HUMAN PTN11_HUMAN] Acts downstream of various receptor and cytoplasmic protein tyrosine kinases to participate in the signal transduction from the cell surface to the nucleus. Dephosphorylates ROCK2 at Tyr-722 resulting in stimulatation of its RhoA binding activity.<ref>PMID:10655584</ref> <ref>PMID:18829466</ref> <ref>PMID:18559669</ref> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 21: | Line 20: | ||
</div> | </div> | ||
<div class="pdbe-citations 5ibs" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 5ibs" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Tyrosine phosphatase 3D structures|Tyrosine phosphatase 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: | [[Category: Blacklow SC]] | ||
[[Category: | [[Category: Fodor M]] | ||
[[Category: | [[Category: LaRochelle JR]] | ||
[[Category: | [[Category: Stams T]] | ||
Latest revision as of 16:44, 30 August 2023
Structure of E76Q, a Cancer-Associated Mutation of the Oncogenic Phosphatase SHP2Structure of E76Q, a Cancer-Associated Mutation of the Oncogenic Phosphatase SHP2
Structural highlights
DiseasePTN11_HUMAN Defects in PTPN11 are the cause of LEOPARD syndrome type 1 (LEOPARD1) [MIM:151100. It is an autosomal dominant disorder allelic with Noonan syndrome. The acronym LEOPARD stands for lentigines, electrocardiographic conduction abnormalities, ocular hypertelorism, pulmonic stenosis, abnormalities of genitalia, retardation of growth, and deafness.[1] [2] [3] [4] [5] [6] [7] Defects in PTPN11 are the cause of Noonan syndrome type 1 (NS1) [MIM:163950. Noonan syndrome (NS) is a disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. Some patients with Noonan syndrome type 1 develop multiple giant cell lesions of the jaw or other bony or soft tissues, which are classified as pigmented villomoduolar synovitis (PVNS) when occurring in the jaw or joints. Note=Mutations in PTPN11 account for more than 50% of the cases. Rarely, NS is associated with juvenile myelomonocytic leukemia (JMML). NS1 inheritance is autosomal dominant.[8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] Defects in PTPN11 are a cause of juvenile myelomonocytic leukemia (JMML) [MIM:607785. JMML is a pediatric myelodysplastic syndrome that constitutes approximately 30% of childhood cases of myelodysplastic syndrome (MDS) and 2% of leukemia. It is characterized by leukocytosis with tissue infiltration and in vitro hypersensitivity of myeloid progenitors to granulocyte-macrophage colony stimulating factor.[20] Defects in PTPN11 are a cause of metachondromatosis (MC) [MIM:156250. It is a skeletal disorder with radiologic fetarures of both multiple exostoses and Ollier disease, characterized by the presence of multiple enchondromas and osteochondroma-like lesions.[21] FunctionPTN11_HUMAN Acts downstream of various receptor and cytoplasmic protein tyrosine kinases to participate in the signal transduction from the cell surface to the nucleus. Dephosphorylates ROCK2 at Tyr-722 resulting in stimulatation of its RhoA binding activity.[22] [23] [24] Publication Abstract from PubMedThe proto-oncogene PTPN11 encodes a cytoplasmic protein tyrosine phosphatase, SHP2, which is required for normal development and sustained activation of the Ras-MAPK signaling pathway. Germline mutations in SHP2 cause developmental disorders, and somatic mutations have been identified in childhood and adult cancers and drive leukemia in mice. Despite our knowledge of the PTPN11 variations associated with pathology, the structural and functional consequences of many disease-associated mutants remain poorly understood. Here, we combine X-ray crystallography, small-angle X-ray scattering, and biochemistry to elucidate structural and mechanistic features of three cancer-associated SHP2 variants harboring single point mutations within the N-SH2:PTP interdomain autoinhibitory interface. Our findings directly compare the impact of each mutation on autoinhibition of the phosphatase and advance the development of structure-guided and mutation-specific SHP2 therapies. Structural and Functional Consequences of Three Cancer-Associated Mutations of the Oncogenic Phosphatase SHP2.,LaRochelle JR, Fodor M, Xu X, Durzynska I, Fan L, Stams T, Chan HM, LaMarche MJ, Chopra R, Wang P, Fortin PD, Acker MG, Blacklow SC Biochemistry. 2016 Apr 19;55(15):2269-77. doi: 10.1021/acs.biochem.5b01287. Epub , 2016 Apr 11. PMID:27030275[25] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|