3cx5: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{STRUCTURE_3cx5|  PDB=3cx5  |  SCENE=  }}
===Structure of complex III with bound cytochrome c in reduced state and definition of a minimal core interface for electron transfer.===
{{ABSTRACT_PUBMED_18390544}}


==Function==
==Structure of complex III with bound cytochrome c in reduced state and definition of a minimal core interface for electron transfer.==
[[http://www.uniprot.org/uniprot/QCR6_YEAST QCR6_YEAST]] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c. QCR6 may mediate formation of the complex between cytochromes c and c1. [[http://www.uniprot.org/uniprot/CYB_YEAST CYB_YEAST]] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c. [[http://www.uniprot.org/uniprot/QCR7_YEAST QCR7_YEAST]] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c. QCR7 is involved in redox-linked proton pumping. [[http://www.uniprot.org/uniprot/QCR9_YEAST QCR9_YEAST]] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c. QCR9 is required for formation of a fully functional complex. [[http://www.uniprot.org/uniprot/QCR2_YEAST QCR2_YEAST]] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c. QCR2 is required for the assembly of the complex. [[http://www.uniprot.org/uniprot/CYC1_YEAST CYC1_YEAST]] Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain. [[http://www.uniprot.org/uniprot/QCR8_YEAST QCR8_YEAST]] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c. QCR8, together with cytochrome b, binds to ubiquinone. [[http://www.uniprot.org/uniprot/QCR1_YEAST QCR1_YEAST]] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c. COR1 may mediate formation of the complex between cytochromes c and c1. [[http://www.uniprot.org/uniprot/CY1_YEAST CY1_YEAST]] Heme-containing component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c. [[http://www.uniprot.org/uniprot/UCRI_YEAST UCRI_YEAST]] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c.  
<StructureSection load='3cx5' size='340' side='right'caption='[[3cx5]], [[Resolution|resolution]] 1.90&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[3cx5]] is a 20 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus] and [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3CX5 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3CX5 FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=6PH:(1R)-2-(PHOSPHONOOXY)-1-[(TRIDECANOYLOXY)METHYL]ETHYL+PENTADECANOATE'>6PH</scene>, <scene name='pdbligand=7PH:(1R)-2-(DODECANOYLOXY)-1-[(PHOSPHONOOXY)METHYL]ETHYL+TETRADECANOATE'>7PH</scene>, <scene name='pdbligand=8PE:(2R)-3-{[(S)-(2-AMINOETHOXY)(HYDROXY)PHOSPHORYL]OXY}-2-(TETRADECANOYLOXY)PROPYL+OCTADECANOATE'>8PE</scene>, <scene name='pdbligand=9PE:(1R)-2-{[(S)-(2-AMINOETHOXY)(HYDROXY)PHOSPHORYL]OXY}-1-[(HEPTANOYLOXY)METHYL]ETHYL+OCTADECANOATE'>9PE</scene>, <scene name='pdbligand=CN3:(2R,5S,11R,14R)-5,8,11-TRIHYDROXY-2-(NONANOYLOXY)-5,11-DIOXIDO-16-OXO-14-[(PROPANOYLOXY)METHYL]-4,6,10,12,15-PENTAOXA-5,11-DIPHOSPHANONADEC-1-YL+UNDECANOATE'>CN3</scene>, <scene name='pdbligand=CN5:(5S,11R)-5,8,11-TRIHYDROXY-5,11-DIOXIDO-17-OXO-4,6,10,12,16-PENTAOXA-5,11-DIPHOSPHAOCTADEC-1-YL+PENTADECANOATE'>CN5</scene>, <scene name='pdbligand=FES:FE2/S2+(INORGANIC)+CLUSTER'>FES</scene>, <scene name='pdbligand=FRU:FRUCTOSE'>FRU</scene>, <scene name='pdbligand=GLC:ALPHA-D-GLUCOSE'>GLC</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=M3L:N-TRIMETHYLLYSINE'>M3L</scene>, <scene name='pdbligand=PRD_900003:sucrose'>PRD_900003</scene>, <scene name='pdbligand=SMA:STIGMATELLIN+A'>SMA</scene>, <scene name='pdbligand=UMQ:UNDECYL-MALTOSIDE'>UMQ</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3cx5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3cx5 OCA], [https://pdbe.org/3cx5 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3cx5 RCSB], [https://www.ebi.ac.uk/pdbsum/3cx5 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3cx5 ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/QCR1_YEAST QCR1_YEAST] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c. COR1 may mediate formation of the complex between cytochromes c and c1.
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/cx/3cx5_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3cx5 ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
In cellular respiration, cytochrome c transfers electrons from cytochrome bc(1) complex (complex III) to cytochrome c oxidase by transiently binding to the membrane proteins. Here, we report the structure of isoform-1 cytochrome c bound to cytochrome bc(1) complex at 1.9 A resolution in reduced state. The dimer structure is asymmetric. Monovalent cytochrome c binding is correlated with conformational changes of the Rieske head domain and subunit QCR6p and with a higher number of interfacial water molecules bound to cytochrome c(1). Pronounced hydration and a "mobility mismatch" at the interface with disordered charged residues on the cytochrome c side are favorable for transient binding. Within the hydrophobic interface, a minimal core was identified by comparison with the novel structure of the complex with bound isoform-2 cytochrome c. Four core interactions encircle the heme cofactors surrounded by variable interactions. The core interface may be a feature to gain specificity for formation of the reactive complex.


==About this Structure==
Structure of complex III with bound cytochrome c in reduced state and definition of a minimal core interface for electron transfer.,Solmaz SR, Hunte C J Biol Chem. 2008 Jun 20;283(25):17542-9. Epub 2008 Apr 4. PMID:18390544<ref>PMID:18390544</ref>
[[3cx5]] is a 23 chain structure with sequence from [http://en.wikipedia.org/wiki/Mus_musculus Mus musculus] and [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3CX5 OCA].
 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 3cx5" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
*[[Cytochrome bc1 complex|Cytochrome bc1 complex]]
*[[Cytochrome bc1 3D structures|Cytochrome bc1 3D structures]]
*[[Cytochrome c|Cytochrome c]]
== References ==
 
<references/>
==Reference==
__TOC__
<ref group="xtra">PMID:018390544</ref><references group="xtra"/><references/>
</StructureSection>
[[Category: Large Structures]]
[[Category: Mus musculus]]
[[Category: Mus musculus]]
[[Category: Saccharomyces cerevisiae]]
[[Category: Saccharomyces cerevisiae]]
[[Category: Ubiquinol--cytochrome-c reductase]]
[[Category: Hunte C]]
[[Category: Hunte, C.]]
[[Category: Solmaz SRN]]
[[Category: Solmaz, S R.N.]]
[[Category: Complex iii]]
[[Category: Cytochrome bc1 complex]]
[[Category: Cytochrome c]]
[[Category: Electron transfer complex]]
[[Category: Electron transport]]
[[Category: Heme]]
[[Category: Inner membrane]]
[[Category: Iron]]
[[Category: Iron-sulfur]]
[[Category: Metal-binding]]
[[Category: Methylation]]
[[Category: Mitochondrialtransmembrane complex]]
[[Category: Mitochondrion]]
[[Category: Oxidoreductase]]
[[Category: Phosphoprotein]]
[[Category: Respiratory chain]]
[[Category: Transient protein-protein interaction]]
[[Category: Transit peptide]]
[[Category: Transport]]

Latest revision as of 15:34, 30 August 2023

Structure of complex III with bound cytochrome c in reduced state and definition of a minimal core interface for electron transfer.Structure of complex III with bound cytochrome c in reduced state and definition of a minimal core interface for electron transfer.

Structural highlights

3cx5 is a 20 chain structure with sequence from Mus musculus and Saccharomyces cerevisiae. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.9Å
Ligands:, , , , , , , , , , , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

QCR1_YEAST Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c. COR1 may mediate formation of the complex between cytochromes c and c1.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

In cellular respiration, cytochrome c transfers electrons from cytochrome bc(1) complex (complex III) to cytochrome c oxidase by transiently binding to the membrane proteins. Here, we report the structure of isoform-1 cytochrome c bound to cytochrome bc(1) complex at 1.9 A resolution in reduced state. The dimer structure is asymmetric. Monovalent cytochrome c binding is correlated with conformational changes of the Rieske head domain and subunit QCR6p and with a higher number of interfacial water molecules bound to cytochrome c(1). Pronounced hydration and a "mobility mismatch" at the interface with disordered charged residues on the cytochrome c side are favorable for transient binding. Within the hydrophobic interface, a minimal core was identified by comparison with the novel structure of the complex with bound isoform-2 cytochrome c. Four core interactions encircle the heme cofactors surrounded by variable interactions. The core interface may be a feature to gain specificity for formation of the reactive complex.

Structure of complex III with bound cytochrome c in reduced state and definition of a minimal core interface for electron transfer.,Solmaz SR, Hunte C J Biol Chem. 2008 Jun 20;283(25):17542-9. Epub 2008 Apr 4. PMID:18390544[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Solmaz SR, Hunte C. Structure of complex III with bound cytochrome c in reduced state and definition of a minimal core interface for electron transfer. J Biol Chem. 2008 Jun 20;283(25):17542-9. Epub 2008 Apr 4. PMID:18390544 doi:10.1074/jbc.M710126200

3cx5, resolution 1.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA