3cbm: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:3cbm.png|left|200px]]


{{STRUCTURE_3cbm| PDB=3cbm | SCENE= }}
==SET7/9-ER-AdoMet complex==
<StructureSection load='3cbm' size='340' side='right'caption='[[3cbm]], [[Resolution|resolution]] 1.69&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[3cbm]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3CBM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3CBM FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.69&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BME:BETA-MERCAPTOETHANOL'>BME</scene>, <scene name='pdbligand=MLZ:N-METHYL-LYSINE'>MLZ</scene>, <scene name='pdbligand=SAH:S-ADENOSYL-L-HOMOCYSTEINE'>SAH</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3cbm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3cbm OCA], [https://pdbe.org/3cbm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3cbm RCSB], [https://www.ebi.ac.uk/pdbsum/3cbm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3cbm ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/SETD7_HUMAN SETD7_HUMAN] Histone methyltransferase that specifically monomethylates 'Lys-4' of histone H3. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation. Plays a central role in the transcriptional activation of genes such as collagenase or insulin. Recruited by IPF1/PDX-1 to the insulin promoter, leading to activate transcription. Has also methyltransferase activity toward non-histone proteins such as p53/TP53, TAF10, and possibly TAF7 by recognizing and binding the [KR]-[STA]-K in substrate proteins. Monomethylates 'Lys-189' of TAF10, leading to increase the affinity of TAF10 for RNA polymerase II. Monomethylates 'Lys-372' of p53/TP53, stabilizing p53/TP53 and increasing p53/TP53-mediated transcriptional activation.<ref>PMID:12588998</ref> <ref>PMID:15099517</ref> <ref>PMID:16141209</ref> <ref>PMID:17108971</ref> <ref>PMID:12540855</ref> <ref>PMID:15525938</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/cb/3cbm_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3cbm ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Estrogen receptor alpha (ER) is a ligand-dependent transcription factor. Upon binding estrogen, ER recruits coactivator complexes with histone acetyltransferase or methyltransferase activities to activate downstream target genes. In addition to histones, coactivators can modify ER itself and other proteins in the transactivation complex. Here, we show that ER is directly methylated at lysine 302 (K302) by the SET7 methyltransferase. SET7-mediated methylation stabilizes ER and is necessary for the efficient recruitment of ER to its target genes and for their transactivation. The SET7-ER complex structure reveals the molecular basis for ER peptide recognition and predicts that modifications or mutations of nearby residues would affect K302 methylation. Indeed, a breast cancer-associated mutation at K303 (K303R) alters methylation at K302 in vitro and in vivo. These findings raise the possibility that generation, recognition, and removal of modifications within the ER hinge region generate "ER modification cassettes" that yield distinct patterns for signaling downstream events.


===SET7/9-ER-AdoMet complex===
Regulation of estrogen receptor alpha by the SET7 lysine methyltransferase.,Subramanian K, Jia D, Kapoor-Vazirani P, Powell DR, Collins RE, Sharma D, Peng J, Cheng X, Vertino PM Mol Cell. 2008 May 9;30(3):336-47. PMID:18471979<ref>PMID:18471979</ref>


{{ABSTRACT_PUBMED_18471979}}
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 3cbm" style="background-color:#fffaf0;"></div>


==About this Structure==
==See Also==
[[3cbm]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3CBM OCA].
*[[Histone methyltransferase 3D structures|Histone methyltransferase 3D structures]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:018471979</ref><references group="xtra"/>
__TOC__
[[Category: Histone-lysine N-methyltransferase]]
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Cheng, X.]]
[[Category: Large Structures]]
[[Category: Jia, D.]]
[[Category: Synthetic construct]]
[[Category: Activator]]
[[Category: Cheng X]]
[[Category: Chromatin regulator]]
[[Category: Jia D]]
[[Category: Chromosomal protein]]
[[Category: Dna-binding]]
[[Category: Estrogen receptor]]
[[Category: Lipid-binding]]
[[Category: Metal-binding]]
[[Category: Methyltransferase]]
[[Category: Nucleus]]
[[Category: Phosphoprotein]]
[[Category: Protein lysine methylation]]
[[Category: S-adenosyl-l-methionine]]
[[Category: Steroid-binding]]
[[Category: Transcription]]
[[Category: Transcription regulation]]
[[Category: Transferase]]
[[Category: Transferase-transferase receptor complex]]
[[Category: Zinc-finger]]

Latest revision as of 15:25, 30 August 2023

SET7/9-ER-AdoMet complexSET7/9-ER-AdoMet complex

Structural highlights

3cbm is a 2 chain structure with sequence from Homo sapiens and Synthetic construct. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.69Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

SETD7_HUMAN Histone methyltransferase that specifically monomethylates 'Lys-4' of histone H3. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation. Plays a central role in the transcriptional activation of genes such as collagenase or insulin. Recruited by IPF1/PDX-1 to the insulin promoter, leading to activate transcription. Has also methyltransferase activity toward non-histone proteins such as p53/TP53, TAF10, and possibly TAF7 by recognizing and binding the [KR]-[STA]-K in substrate proteins. Monomethylates 'Lys-189' of TAF10, leading to increase the affinity of TAF10 for RNA polymerase II. Monomethylates 'Lys-372' of p53/TP53, stabilizing p53/TP53 and increasing p53/TP53-mediated transcriptional activation.[1] [2] [3] [4] [5] [6]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Estrogen receptor alpha (ER) is a ligand-dependent transcription factor. Upon binding estrogen, ER recruits coactivator complexes with histone acetyltransferase or methyltransferase activities to activate downstream target genes. In addition to histones, coactivators can modify ER itself and other proteins in the transactivation complex. Here, we show that ER is directly methylated at lysine 302 (K302) by the SET7 methyltransferase. SET7-mediated methylation stabilizes ER and is necessary for the efficient recruitment of ER to its target genes and for their transactivation. The SET7-ER complex structure reveals the molecular basis for ER peptide recognition and predicts that modifications or mutations of nearby residues would affect K302 methylation. Indeed, a breast cancer-associated mutation at K303 (K303R) alters methylation at K302 in vitro and in vivo. These findings raise the possibility that generation, recognition, and removal of modifications within the ER hinge region generate "ER modification cassettes" that yield distinct patterns for signaling downstream events.

Regulation of estrogen receptor alpha by the SET7 lysine methyltransferase.,Subramanian K, Jia D, Kapoor-Vazirani P, Powell DR, Collins RE, Sharma D, Peng J, Cheng X, Vertino PM Mol Cell. 2008 May 9;30(3):336-47. PMID:18471979[7]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Martens JH, Verlaan M, Kalkhoven E, Zantema A. Cascade of distinct histone modifications during collagenase gene activation. Mol Cell Biol. 2003 Mar;23(5):1808-16. PMID:12588998
  2. Kouskouti A, Scheer E, Staub A, Tora L, Talianidis I. Gene-specific modulation of TAF10 function by SET9-mediated methylation. Mol Cell. 2004 Apr 23;14(2):175-82. PMID:15099517
  3. Francis J, Chakrabarti SK, Garmey JC, Mirmira RG. Pdx-1 links histone H3-Lys-4 methylation to RNA polymerase II elongation during activation of insulin transcription. J Biol Chem. 2005 Oct 28;280(43):36244-53. Epub 2005 Sep 1. PMID:16141209 doi:M505741200
  4. Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA, Kubicek S, Opravil S, Jenuwein T, Berger SL. Repression of p53 activity by Smyd2-mediated methylation. Nature. 2006 Nov 30;444(7119):629-32. Epub 2006 Nov 15. PMID:17108971 doi:10.1038/nature05287
  5. Xiao B, Jing C, Wilson JR, Walker PA, Vasisht N, Kelly G, Howell S, Taylor IA, Blackburn GM, Gamblin SJ. Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature. 2003 Feb 6;421(6923):652-6. Epub 2003 Jan 22. PMID:12540855 doi:10.1038/nature01378
  6. Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS, McKinney K, Tempst P, Prives C, Gamblin SJ, Barlev NA, Reinberg D. Regulation of p53 activity through lysine methylation. Nature. 2004 Nov 18;432(7015):353-60. Epub 2004 Nov 3. PMID:15525938 doi:10.1038/nature03117
  7. Subramanian K, Jia D, Kapoor-Vazirani P, Powell DR, Collins RE, Sharma D, Peng J, Cheng X, Vertino PM. Regulation of estrogen receptor alpha by the SET7 lysine methyltransferase. Mol Cell. 2008 May 9;30(3):336-47. PMID:18471979 doi:10.1016/j.molcel.2008.03.022

3cbm, resolution 1.69Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA