2qk8: Difference between revisions
No edit summary |
No edit summary |
||
(15 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | ==Crystal structure of the anthrax drug target, Bacillus anthracis dihydrofolate reductase== | ||
<StructureSection load='2qk8' size='340' side='right'caption='[[2qk8]], [[Resolution|resolution]] 2.40Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2qk8]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_anthracis_str._Sterne Bacillus anthracis str. Sterne]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2QK8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2QK8 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.4Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MTX:METHOTREXATE'>MTX</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2qk8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2qk8 OCA], [https://pdbe.org/2qk8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2qk8 RCSB], [https://www.ebi.ac.uk/pdbsum/2qk8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2qk8 ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/Q81R22_BACAN Q81R22_BACAN] Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis (By similarity).[PIRNR:PIRNR000194] | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/qk/2qk8_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2qk8 ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Spores of Bacillus anthracis are the infectious agent of anthrax. Current antibiotic treatments are limited due to resistance and patient age restrictions; thus, additional targets for therapeutic intervention are needed. One possible candidate is dihydrofolate reductase (DHFR), a biosynthetic enzyme necessary for anthrax pathogenicity. We determined the crystal structure of DHFR from B. anthracis (baDHFR) in complex with methotrexate (MTX; 1) at 2.4 Angstrom resolution. The structure reveals the crucial interactions required for MTX binding and a putative molecular basis for how baDHFR has natural resistance to trimethoprim (TMP; 2). The structure also allows insights for designing selective baDHFR inhibitors that will have weak affinities for the human enzyme. Additionally, we have found that 5-nitro-6-methylamino-isocytosine (MANIC; 3), which inhibits another B. anthracis folate synthesis enzyme, dihydropteroate synthase (DHPS), can also inhibit baDHFR. This provides a starting point for designing multi-target inhibitors that are less likely to induce drug resistance. | Spores of Bacillus anthracis are the infectious agent of anthrax. Current antibiotic treatments are limited due to resistance and patient age restrictions; thus, additional targets for therapeutic intervention are needed. One possible candidate is dihydrofolate reductase (DHFR), a biosynthetic enzyme necessary for anthrax pathogenicity. We determined the crystal structure of DHFR from B. anthracis (baDHFR) in complex with methotrexate (MTX; 1) at 2.4 Angstrom resolution. The structure reveals the crucial interactions required for MTX binding and a putative molecular basis for how baDHFR has natural resistance to trimethoprim (TMP; 2). The structure also allows insights for designing selective baDHFR inhibitors that will have weak affinities for the human enzyme. Additionally, we have found that 5-nitro-6-methylamino-isocytosine (MANIC; 3), which inhibits another B. anthracis folate synthesis enzyme, dihydropteroate synthase (DHPS), can also inhibit baDHFR. This provides a starting point for designing multi-target inhibitors that are less likely to induce drug resistance. | ||
Crystal structure of the anthrax drug target, Bacillus anthracis dihydrofolate reductase.,Bennett BC, Xu H, Simmerman RF, Lee RE, Dealwis CG J Med Chem. 2007 Sep 6;50(18):4374-81. Epub 2007 Aug 14. PMID:17696333<ref>PMID:17696333</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2qk8" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Dihydrofolate reductase 3D structures|Dihydrofolate reductase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Bacillus anthracis str. Sterne]] | |||
[[Category: Large Structures]] | |||
[[Category: Bennett BC]] | |||
[[Category: Dealwis CG]] | |||
[[Category: Lee RE]] | |||
[[Category: Simmerman RF]] | |||
[[Category: Xu H]] |