2pv2: Difference between revisions
No edit summary |
No edit summary |
||
(10 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
< | ==Crystallographic Structure of SurA first peptidyl-prolyl isomerase domain complexed with peptide NFTLKFWDIFRK== | ||
<StructureSection load='2pv2' size='340' side='right'caption='[[2pv2]], [[Resolution|resolution]] 1.30Å' scene=''> | |||
You may | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2pv2]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2PV2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2PV2 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.3Å</td></tr> | |||
-- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2pv2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2pv2 OCA], [https://pdbe.org/2pv2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2pv2 RCSB], [https://www.ebi.ac.uk/pdbsum/2pv2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2pv2 ProSAT]</span></td></tr> | ||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/SURA_ECOLI SURA_ECOLI] Chaperone involved in the correct folding and assembly of outer membrane proteins, such as OmpA, OmpF and LamB. Recognizes specific patterns of aromatic residues and the orientation of their side chains, which are found more frequently in integral outer membrane proteins. May act in both early periplasmic and late outer membrane-associated steps of protein maturation. Essential for the survival of E.coli in stationary phase. Required for pilus biogenesis.<ref>PMID:2165476</ref> <ref>PMID:8985185</ref> <ref>PMID:11226178</ref> <ref>PMID:16267292</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/pv/2pv2_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2pv2 ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The periplasmic molecular chaperone protein SurA facilitates correct folding and maturation of outer membrane proteins in Gram-negative bacteria. It preferentially binds peptides that have a high fraction of aromatic amino acids. Phage display selections, isothermal titration calorimetry and crystallographic structure determination have been used to elucidate the basis of the binding specificity. The peptide recognition is imparted by the first peptidyl-prolyl isomerase (PPIase) domain of SurA. Crystal structures of complexes between peptides of sequence WEYIPNV and NFTLKFWDIFRK with the first PPIase domain of the Escherichia coli SurA protein at 1.3 A resolution, and of a complex between the dodecapeptide and a SurA fragment lacking the second PPIase domain at 3.4 A resolution, have been solved. SurA binds as a monomer to the heptapeptide in an extended conformation. It binds as a dimer to the dodecapeptide in an alpha-helical conformation, predicated on a substantial structural rearrangement of the SurA protein. In both cases, side-chains of aromatic residues of the peptides contribute a large fraction of the binding interactions. SurA therefore asserts a recognition preference for aromatic amino acids in a variety of sequence configurations by adopting alternative tertiary and quaternary structures to bind peptides in different conformations. | |||
The periplasmic bacterial molecular chaperone SurA adapts its structure to bind peptides in different conformations to assert a sequence preference for aromatic residues.,Xu X, Wang S, Hu YX, McKay DB J Mol Biol. 2007 Oct 19;373(2):367-81. Epub 2007 Aug 15. PMID:17825319<ref>PMID:17825319</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2pv2" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
== | |||
== | |||
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: McKay DB]] | |||
[[Category: McKay | [[Category: Xu X]] | ||
[[Category: Xu | |||
Latest revision as of 14:09, 30 August 2023
Crystallographic Structure of SurA first peptidyl-prolyl isomerase domain complexed with peptide NFTLKFWDIFRKCrystallographic Structure of SurA first peptidyl-prolyl isomerase domain complexed with peptide NFTLKFWDIFRK
Structural highlights
FunctionSURA_ECOLI Chaperone involved in the correct folding and assembly of outer membrane proteins, such as OmpA, OmpF and LamB. Recognizes specific patterns of aromatic residues and the orientation of their side chains, which are found more frequently in integral outer membrane proteins. May act in both early periplasmic and late outer membrane-associated steps of protein maturation. Essential for the survival of E.coli in stationary phase. Required for pilus biogenesis.[1] [2] [3] [4] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe periplasmic molecular chaperone protein SurA facilitates correct folding and maturation of outer membrane proteins in Gram-negative bacteria. It preferentially binds peptides that have a high fraction of aromatic amino acids. Phage display selections, isothermal titration calorimetry and crystallographic structure determination have been used to elucidate the basis of the binding specificity. The peptide recognition is imparted by the first peptidyl-prolyl isomerase (PPIase) domain of SurA. Crystal structures of complexes between peptides of sequence WEYIPNV and NFTLKFWDIFRK with the first PPIase domain of the Escherichia coli SurA protein at 1.3 A resolution, and of a complex between the dodecapeptide and a SurA fragment lacking the second PPIase domain at 3.4 A resolution, have been solved. SurA binds as a monomer to the heptapeptide in an extended conformation. It binds as a dimer to the dodecapeptide in an alpha-helical conformation, predicated on a substantial structural rearrangement of the SurA protein. In both cases, side-chains of aromatic residues of the peptides contribute a large fraction of the binding interactions. SurA therefore asserts a recognition preference for aromatic amino acids in a variety of sequence configurations by adopting alternative tertiary and quaternary structures to bind peptides in different conformations. The periplasmic bacterial molecular chaperone SurA adapts its structure to bind peptides in different conformations to assert a sequence preference for aromatic residues.,Xu X, Wang S, Hu YX, McKay DB J Mol Biol. 2007 Oct 19;373(2):367-81. Epub 2007 Aug 15. PMID:17825319[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|