2ogu: Difference between revisions
No edit summary |
No edit summary |
||
(13 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal structure of the isolated MthK RCK domain== | |||
<StructureSection load='2ogu' size='340' side='right'caption='[[2ogu]], [[Resolution|resolution]] 3.23Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2ogu]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Methanothermobacter_thermautotrophicus_str._Delta_H Methanothermobacter thermautotrophicus str. Delta H]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2OGU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2OGU FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.23Å</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2ogu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2ogu OCA], [https://pdbe.org/2ogu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2ogu RCSB], [https://www.ebi.ac.uk/pdbsum/2ogu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2ogu ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/MTHK_METTH MTHK_METTH] Calcium-gated potassium channel. | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/og/2ogu_consurf.spt"</scriptWhenChecked> | |||
== | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2ogu ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The crystal structure of the RCK-containing MthK provides a molecular framework for understanding the ligand gating mechanisms of K+ channels. Here we examined the macroscopic currents of MthK in enlarged Escherichia coli membrane by patch clamp and rapid perfusion techniques and showed that the channel undergoes desensitization in seconds after activation by Ca2+ or Cd2+. Additionally, MthK is inactivated by slightly acidic pH only from the cytoplasmic side. Examinations of isolated RCK domain by size-exclusion chromatography, static light scattering, analytical sedimentation, and stopped-flow spectroscopy show that Ca2+ rapidly converts isolated RCK monomers to multimers at alkaline pH. In contrast, the RCK domain at acidic pH remains firmly dimeric regardless of Ca2+ but restores predominantly to multimer or monomer at basic pH with or without Ca2+, respectively. These functional and biochemical analyses correlate the four functional states of the MthK channel with distinct oligomeric states of its RCK domains and indicate that the RCK domains undergo oligomeric conversions in modulating MthK activities. | The crystal structure of the RCK-containing MthK provides a molecular framework for understanding the ligand gating mechanisms of K+ channels. Here we examined the macroscopic currents of MthK in enlarged Escherichia coli membrane by patch clamp and rapid perfusion techniques and showed that the channel undergoes desensitization in seconds after activation by Ca2+ or Cd2+. Additionally, MthK is inactivated by slightly acidic pH only from the cytoplasmic side. Examinations of isolated RCK domain by size-exclusion chromatography, static light scattering, analytical sedimentation, and stopped-flow spectroscopy show that Ca2+ rapidly converts isolated RCK monomers to multimers at alkaline pH. In contrast, the RCK domain at acidic pH remains firmly dimeric regardless of Ca2+ but restores predominantly to multimer or monomer at basic pH with or without Ca2+, respectively. These functional and biochemical analyses correlate the four functional states of the MthK channel with distinct oligomeric states of its RCK domains and indicate that the RCK domains undergo oligomeric conversions in modulating MthK activities. | ||
Dynamic oligomeric conversions of the cytoplasmic RCK domains mediate MthK potassium channel activity.,Kuo MM, Baker KA, Wong L, Choe S Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2151-6. Epub 2007 Feb 7. PMID:17287352<ref>PMID:17287352</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2ogu" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Potassium channel 3D structures|Potassium channel 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Large Structures]] | |||
[[Category: Methanothermobacter thermautotrophicus str. Delta H]] | |||
[[Category: Baker KA]] | |||
[[Category: Choe S]] | |||
[[Category: Kuo MMC]] | |||
[[Category: Wong L]] |