2oe9: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Seed}}
[[Image:2oe9.png|left|200px]]


<!--
==High-pressure structure of pseudo-WT T4 Lysozyme==
The line below this paragraph, containing "STRUCTURE_2oe9", creates the "Structure Box" on the page.
<StructureSection load='2oe9' size='340' side='right'caption='[[2oe9]], [[Resolution|resolution]] 2.01&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[2oe9]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_virus_T4 Escherichia virus T4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2OE9 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2OE9 FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.01&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BME:BETA-MERCAPTOETHANOL'>BME</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr>
{{STRUCTURE_2oe9|  PDB=2oe9  |  SCENE=  }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2oe9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2oe9 OCA], [https://pdbe.org/2oe9 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2oe9 RCSB], [https://www.ebi.ac.uk/pdbsum/2oe9 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2oe9 ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/ENLYS_BPT4 ENLYS_BPT4] Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.<ref>PMID:22389108</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/oe/2oe9_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2oe9 ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Steric constraints, charged interactions and many other forces important to protein structure and function can be explored by mutagenic experiments. Research of this kind has led to a wealth of knowledge about what stabilizes proteins in their folded states. To gain a more complete picture requires that we perturb these structures in a continuous manner, something mutagenesis cannot achieve. With high pressure crystallographic methods it is now possible to explore the detailed properties of proteins while continuously varying thermodynamic parameters. Here, we detail the structural response of the cavity-containing mutant L99A of T4 lysozyme, as well as its pseudo wild-type (WT*) counterpart, to hydrostatic pressure. Surprisingly, the cavity has almost no effect on the pressure response: virtually the same changes are observed in WT* as in L99A under pressure. The cavity is most rigid, while other regions deform substantially. This implies that while some residues may increase the thermodynamic stability of a protein, they may also be structurally irrelevant. As recently shown, the cavity fills with water at pressures above 100 MPa while retaining its overall size. The resultant picture of the protein is one in which conformationally fluctuating side groups provide a liquid-like environment, but which also contribute to the rigidity of the peptide backbone.


===High-pressure structure of pseudo-WT T4 Lysozyme===
Structural rigidity of a large cavity-containing protein revealed by high-pressure crystallography.,Collins MD, Quillin ML, Hummer G, Matthews BW, Gruner SM J Mol Biol. 2007 Mar 30;367(3):752-63. Epub 2006 Dec 15. PMID:17292912<ref>PMID:17292912</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 2oe9" style="background-color:#fffaf0;"></div>


<!--
==See Also==
The line below this paragraph, {{ABSTRACT_PUBMED_17292912}}, adds the Publication Abstract to the page
*[[Lysozyme 3D structures|Lysozyme 3D structures]]
(as it appears on PubMed at http://www.pubmed.gov), where 17292912 is the PubMed ID number.
== References ==
-->
<references/>
{{ABSTRACT_PUBMED_17292912}}
__TOC__
 
</StructureSection>
==About this Structure==
[[Category: Escherichia virus T4]]
2OE9 is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Enterobacteria_phage_t4 Enterobacteria phage t4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2OE9 OCA].
[[Category: Large Structures]]
 
[[Category: Collins MD]]
==Reference==
[[Category: Gruner SM]]
Structural rigidity of a large cavity-containing protein revealed by high-pressure crystallography., Collins MD, Quillin ML, Hummer G, Matthews BW, Gruner SM, J Mol Biol. 2007 Mar 30;367(3):752-63. Epub 2006 Dec 15. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/17292912 17292912]
[[Category: Matthews BW]]
 
[[Category: Quillin ML]]
Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation., Collins MD, Hummer G, Quillin ML, Matthews BW, Gruner SM, Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16668-71. Epub 2005 Nov 3. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/16269539 16269539]
[[Category: Enterobacteria phage t4]]
[[Category: Lysozyme]]
[[Category: Single protein]]
[[Category: Collins, M D.]]
[[Category: Gruner, S M.]]
[[Category: Matthews, B W.]]
[[Category: Quillin, M L.]]
[[Category: High-pressure]]
[[Category: T4 lysozyme]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Jul 28 04:13:14 2008''

Latest revision as of 13:36, 30 August 2023

High-pressure structure of pseudo-WT T4 LysozymeHigh-pressure structure of pseudo-WT T4 Lysozyme

Structural highlights

2oe9 is a 1 chain structure with sequence from Escherichia virus T4. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.01Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

ENLYS_BPT4 Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Steric constraints, charged interactions and many other forces important to protein structure and function can be explored by mutagenic experiments. Research of this kind has led to a wealth of knowledge about what stabilizes proteins in their folded states. To gain a more complete picture requires that we perturb these structures in a continuous manner, something mutagenesis cannot achieve. With high pressure crystallographic methods it is now possible to explore the detailed properties of proteins while continuously varying thermodynamic parameters. Here, we detail the structural response of the cavity-containing mutant L99A of T4 lysozyme, as well as its pseudo wild-type (WT*) counterpart, to hydrostatic pressure. Surprisingly, the cavity has almost no effect on the pressure response: virtually the same changes are observed in WT* as in L99A under pressure. The cavity is most rigid, while other regions deform substantially. This implies that while some residues may increase the thermodynamic stability of a protein, they may also be structurally irrelevant. As recently shown, the cavity fills with water at pressures above 100 MPa while retaining its overall size. The resultant picture of the protein is one in which conformationally fluctuating side groups provide a liquid-like environment, but which also contribute to the rigidity of the peptide backbone.

Structural rigidity of a large cavity-containing protein revealed by high-pressure crystallography.,Collins MD, Quillin ML, Hummer G, Matthews BW, Gruner SM J Mol Biol. 2007 Mar 30;367(3):752-63. Epub 2006 Dec 15. PMID:17292912[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Moussa SH, Kuznetsov V, Tran TA, Sacchettini JC, Young R. Protein determinants of phage T4 lysis inhibition. Protein Sci. 2012 Apr;21(4):571-82. doi: 10.1002/pro.2042. Epub 2012 Mar 2. PMID:22389108 doi:http://dx.doi.org/10.1002/pro.2042
  2. Collins MD, Quillin ML, Hummer G, Matthews BW, Gruner SM. Structural rigidity of a large cavity-containing protein revealed by high-pressure crystallography. J Mol Biol. 2007 Mar 30;367(3):752-63. Epub 2006 Dec 15. PMID:17292912 doi:10.1016/j.jmb.2006.12.021

2oe9, resolution 2.01Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA