2o53: Difference between revisions
No edit summary |
No edit summary |
||
(14 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal structure of apo-Aspartoacylase from human brain== | |||
<StructureSection load='2o53' size='340' side='right'caption='[[2o53]], [[Resolution|resolution]] 2.70Å' scene=''> | |||
| | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2o53]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2O53 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2O53 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.7Å</td></tr> | |||
| | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2o53 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2o53 OCA], [https://pdbe.org/2o53 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2o53 RCSB], [https://www.ebi.ac.uk/pdbsum/2o53 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2o53 ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/ACY2_HUMAN ACY2_HUMAN] Defects in ASPA are the cause of Canavan disease (CAND) [MIM:[https://omim.org/entry/271900 271900]; also known as spongy degeneration of the brain. CAND is a rare neurodegenerative condition of infancy or childhood characterized by white matter vacuolization and demeylination that gives rise to a spongy appearance. The clinical features are onset in early infancy, atonia of neck muscles, hypotonia, hyperextension of legs and flexion of arms, blindness, severe mental defect, megalocephaly, and death by 18 months on the average.<ref>PMID:8252036</ref> <ref>PMID:12706335</ref> <ref>PMID:8023850</ref> <ref>PMID:7668285</ref> <ref>PMID:7599639</ref> <ref>PMID:8659549</ref> <ref>PMID:9452117</ref> <ref>PMID:10564886</ref> <ref>PMID:10407784</ref> <ref>PMID:10909858</ref> <ref>PMID:12638939</ref> <ref>PMID:12205125</ref> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/ACY2_HUMAN ACY2_HUMAN] Catalyzes the deacetylation of N-acetylaspartic acid (NAA) to produce acetate and L-aspartate. NAA occurs in high concentration in brain and its hydrolysis NAA plays a significant part in the maintenance of intact white matter. In other tissues it act as a scavenger of NAA from body fluids. | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/o5/2o53_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2o53 ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Canavan disease is a fatal neurological disorder caused by the malfunctioning of a single metabolic enzyme, aspartoacylase, that catalyzes the deacetylation of N-acetyl- l-aspartate to produce l-aspartate and acetate. The structure of human brain aspartoacylase has been determined in complex with a stable tetrahedral intermediate analogue, N-phosphonomethyl- l-aspartate. This potent inhibitor forms multiple interactions between each of its heteroatoms and the substrate binding groups arrayed within the active site. The binding of the catalytic intermediate analogue induces the conformational ordering of several substrate binding groups, thereby setting up the active site for catalysis. The highly ordered binding of this inhibitor has allowed assignments to be made for substrate binding groups and provides strong support for a carboxypeptidase-type mechanism for the hydrolysis of the amide bond of the substrate, N-acetyl- l-aspartate. | |||
Examination of the Mechanism of Human Brain Aspartoacylase through the Binding of an Intermediate Analogue(,).,Le Coq J, Pavlovsky A, Malik R, Sanishvili R, Xu C, Viola RE Biochemistry. 2008 Mar 18;47(11):3484-92. Epub 2008 Feb 23. PMID:18293939<ref>PMID:18293939</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2o53" style="background-color:#fffaf0;"></div> | |||
== | ==See Also== | ||
*[[Aminoacylase 3D structures|Aminoacylase 3D structures]] | |||
*[[Aspartoacylase 3D structures|Aspartoacylase 3D structures]] | |||
== | == References == | ||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Coq | [[Category: Le Coq J]] | ||
[[Category: Pavlovsky | [[Category: Pavlovsky A]] | ||
[[Category: Sanishvili | [[Category: Sanishvili R]] | ||
[[Category: Viola | [[Category: Viola RE]] | ||
Latest revision as of 13:30, 30 August 2023
Crystal structure of apo-Aspartoacylase from human brainCrystal structure of apo-Aspartoacylase from human brain
Structural highlights
DiseaseACY2_HUMAN Defects in ASPA are the cause of Canavan disease (CAND) [MIM:271900; also known as spongy degeneration of the brain. CAND is a rare neurodegenerative condition of infancy or childhood characterized by white matter vacuolization and demeylination that gives rise to a spongy appearance. The clinical features are onset in early infancy, atonia of neck muscles, hypotonia, hyperextension of legs and flexion of arms, blindness, severe mental defect, megalocephaly, and death by 18 months on the average.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] FunctionACY2_HUMAN Catalyzes the deacetylation of N-acetylaspartic acid (NAA) to produce acetate and L-aspartate. NAA occurs in high concentration in brain and its hydrolysis NAA plays a significant part in the maintenance of intact white matter. In other tissues it act as a scavenger of NAA from body fluids. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedCanavan disease is a fatal neurological disorder caused by the malfunctioning of a single metabolic enzyme, aspartoacylase, that catalyzes the deacetylation of N-acetyl- l-aspartate to produce l-aspartate and acetate. The structure of human brain aspartoacylase has been determined in complex with a stable tetrahedral intermediate analogue, N-phosphonomethyl- l-aspartate. This potent inhibitor forms multiple interactions between each of its heteroatoms and the substrate binding groups arrayed within the active site. The binding of the catalytic intermediate analogue induces the conformational ordering of several substrate binding groups, thereby setting up the active site for catalysis. The highly ordered binding of this inhibitor has allowed assignments to be made for substrate binding groups and provides strong support for a carboxypeptidase-type mechanism for the hydrolysis of the amide bond of the substrate, N-acetyl- l-aspartate. Examination of the Mechanism of Human Brain Aspartoacylase through the Binding of an Intermediate Analogue(,).,Le Coq J, Pavlovsky A, Malik R, Sanishvili R, Xu C, Viola RE Biochemistry. 2008 Mar 18;47(11):3484-92. Epub 2008 Feb 23. PMID:18293939[13] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|