2hd6: Difference between revisions
No edit summary |
No edit summary |
||
(15 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal structure of the human carbonic anhydrase II in complex with a hypoxia-activatable sulfonamide.== | |||
<StructureSection load='2hd6' size='340' side='right'caption='[[2hd6]], [[Resolution|resolution]] 1.80Å' scene=''> | |||
| | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2hd6]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2HD6 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2HD6 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BOS:N-[4-(AMINOSULFONYL)PHENYL]-2-MERCAPTOBENZAMIDE'>BOS</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MBO:MERCURIBENZOIC+ACID'>MBO</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2hd6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2hd6 OCA], [https://pdbe.org/2hd6 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2hd6 RCSB], [https://www.ebi.ac.uk/pdbsum/2hd6 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2hd6 ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/CAH2_HUMAN CAH2_HUMAN] Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:[https://omim.org/entry/259730 259730]; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.<ref>PMID:1928091</ref> <ref>PMID:1542674</ref> <ref>PMID:8834238</ref> <ref>PMID:9143915</ref> <ref>PMID:15300855</ref> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/CAH2_HUMAN CAH2_HUMAN] Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.<ref>PMID:10550681</ref> <ref>PMID:11831900</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/hd/2hd6_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2hd6 ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
An approach for designing bioreductive, hypoxia-activatable carbonic anhydrase (CA, EC 4.2.1.1) inhibitors targeting the tumor-associated isoforms is reported. Sulfonamides incorporating 3,3'-dithiodipropionamide/2,2'-dithiodibenzamido moieties were prepared and reduced enzymatically/chemically in conditions present in hypoxic tumors, leading to thiols. The X-ray crystal structure of the most promising compound, 4-(2-mercaptophenylcarboxamido)benzenesulfonamide, which as disulfide showed a K(I) against hCA IX of 653 nM (in reduced form of 9.1 nM), in adduct with hCA II showed the inhibitor making favorable interactions with Gln92, Val121, Phe131, Leu198, Thr199, Thr200, Pro201, and Pro202, whereas the sulfamoyl moiety was coordinated to the Zn2+ ion. The same interactions were preserved in the adduct with hCA IX, but in addition, a hydrogen bond between the SH moiety of the inhibitor and the amide nitrogen of Gln67 was evidenced, which may explain the almost 2 times more effective inhibition of the tumor-associated isozyme over the cytosolic isoform. | |||
Carbonic anhydrase inhibitors: Hypoxia-activatable sulfonamides incorporating disulfide bonds that target the tumor-associated isoform IX.,De Simone G, Vitale RM, Di Fiore A, Pedone C, Scozzafava A, Montero JL, Winum JY, Supuran CT J Med Chem. 2006 Sep 7;49(18):5544-51. PMID:16942027<ref>PMID:16942027</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2hd6" style="background-color:#fffaf0;"></div> | |||
== | ==See Also== | ||
*[[Carbonic anhydrase 3D structures|Carbonic anhydrase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
== | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: | [[Category: De Simone G]] | ||
[[Category: | [[Category: Di Fiore A]] | ||
[[Category: | [[Category: Pedone C]] | ||
[[Category: Vitale | [[Category: Vitale RM]] | ||
Latest revision as of 12:55, 30 August 2023
Crystal structure of the human carbonic anhydrase II in complex with a hypoxia-activatable sulfonamide.Crystal structure of the human carbonic anhydrase II in complex with a hypoxia-activatable sulfonamide.
Structural highlights
DiseaseCAH2_HUMAN Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:259730; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.[1] [2] [3] [4] [5] FunctionCAH2_HUMAN Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.[6] [7] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedAn approach for designing bioreductive, hypoxia-activatable carbonic anhydrase (CA, EC 4.2.1.1) inhibitors targeting the tumor-associated isoforms is reported. Sulfonamides incorporating 3,3'-dithiodipropionamide/2,2'-dithiodibenzamido moieties were prepared and reduced enzymatically/chemically in conditions present in hypoxic tumors, leading to thiols. The X-ray crystal structure of the most promising compound, 4-(2-mercaptophenylcarboxamido)benzenesulfonamide, which as disulfide showed a K(I) against hCA IX of 653 nM (in reduced form of 9.1 nM), in adduct with hCA II showed the inhibitor making favorable interactions with Gln92, Val121, Phe131, Leu198, Thr199, Thr200, Pro201, and Pro202, whereas the sulfamoyl moiety was coordinated to the Zn2+ ion. The same interactions were preserved in the adduct with hCA IX, but in addition, a hydrogen bond between the SH moiety of the inhibitor and the amide nitrogen of Gln67 was evidenced, which may explain the almost 2 times more effective inhibition of the tumor-associated isozyme over the cytosolic isoform. Carbonic anhydrase inhibitors: Hypoxia-activatable sulfonamides incorporating disulfide bonds that target the tumor-associated isoform IX.,De Simone G, Vitale RM, Di Fiore A, Pedone C, Scozzafava A, Montero JL, Winum JY, Supuran CT J Med Chem. 2006 Sep 7;49(18):5544-51. PMID:16942027[8] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|