2h6c: Difference between revisions
No edit summary |
No edit summary |
||
(12 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal structure of reduced CprK in absence of any ligand== | |||
<StructureSection load='2h6c' size='340' side='right'caption='[[2h6c]], [[Resolution|resolution]] 2.90Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2h6c]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Desulfitobacterium_dehalogenans Desulfitobacterium dehalogenans]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2H6C OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2H6C FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.9Å</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2h6c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2h6c OCA], [https://pdbe.org/2h6c PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2h6c RCSB], [https://www.ebi.ac.uk/pdbsum/2h6c PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2h6c ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/Q9LAS2_9FIRM Q9LAS2_9FIRM] | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
== | Check<jmol> | ||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/h6/2h6c_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2h6c ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Halorespiration is a bacterial respiratory process in which haloorganic compounds act as terminal electron acceptors. This process is controlled at transcriptional level by CprK, a member of the ubiquitous CRP-FNR family. Here we present the crystal structures of oxidized CprK in presence of the ligand ortho-chlorophenolacetic acid and of reduced CprK in absence of this ligand. These structures reveal that highly specific binding of chlorinated, rather than the corresponding non-chlorinated, phenolic compounds in the NH(2)-terminal beta-barrels causes reorientation of these domains with respect to the central alpha-helix at the dimer interface. Unexpectedly, the COOH-terminal DNA-binding domains dimerize in the non-DNA binding state. We postulate the ligand-induced conformational change allows formation of interdomain contacts that disrupt the DNA domain dimer interface and leads to repositioning of the helix-turn-helix motifs. These structures provide a structural framework for further studies on transcriptional control by CRP-FNR homologs in general and of halorespiration regulation by CprK in particular. | Halorespiration is a bacterial respiratory process in which haloorganic compounds act as terminal electron acceptors. This process is controlled at transcriptional level by CprK, a member of the ubiquitous CRP-FNR family. Here we present the crystal structures of oxidized CprK in presence of the ligand ortho-chlorophenolacetic acid and of reduced CprK in absence of this ligand. These structures reveal that highly specific binding of chlorinated, rather than the corresponding non-chlorinated, phenolic compounds in the NH(2)-terminal beta-barrels causes reorientation of these domains with respect to the central alpha-helix at the dimer interface. Unexpectedly, the COOH-terminal DNA-binding domains dimerize in the non-DNA binding state. We postulate the ligand-induced conformational change allows formation of interdomain contacts that disrupt the DNA domain dimer interface and leads to repositioning of the helix-turn-helix motifs. These structures provide a structural framework for further studies on transcriptional control by CRP-FNR homologs in general and of halorespiration regulation by CprK in particular. | ||
CprK crystal structures reveal mechanism for transcriptional control of halorespiration.,Joyce MG, Levy C, Gabor K, Pop SM, Biehl BD, Doukov TI, Ryter JM, Mazon H, Smidt H, van den Heuvel RH, Ragsdale SW, van der Oost J, Leys D J Biol Chem. 2006 Sep 22;281(38):28318-25. Epub 2006 Jun 27. PMID:16803881<ref>PMID:16803881</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2h6c" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Desulfitobacterium dehalogenans]] | [[Category: Desulfitobacterium dehalogenans]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Levy | [[Category: Levy C]] | ||
[[Category: Leys | [[Category: Leys D]] | ||