|
|
(3 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
| | |
| ==2.9 Angstrom X-ray structure of hybrid macroH2A nucleosomes== | | ==2.9 Angstrom X-ray structure of hybrid macroH2A nucleosomes== |
| <StructureSection load='2f8n' size='340' side='right' caption='[[2f8n]], [[Resolution|resolution]] 2.90Å' scene=''> | | <StructureSection load='2f8n' size='340' side='right'caption='[[2f8n]], [[Resolution|resolution]] 2.90Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
| <table><tr><td colspan='2'>[[2f8n]] is a 10 chain structure with sequence from [http://en.wikipedia.org/wiki/ ], [http://en.wikipedia.org/wiki/African_clawed_frog African clawed frog], [http://en.wikipedia.org/wiki/Human Human] and [http://en.wikipedia.org/wiki/Lk3_transgenic_mice Lk3 transgenic mice]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2F8N OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2F8N FirstGlance]. <br> | | <table><tr><td colspan='2'>[[2f8n]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens], [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus] and [https://en.wikipedia.org/wiki/Xenopus_laevis Xenopus laevis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2F8N OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2F8N FirstGlance]. <br> |
| </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1aoi|1aoi]], [[1u35|1u35]], [[1f66|1f66]]</td></tr> | | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.9Å</td></tr> |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2f8n FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2f8n OCA], [http://pdbe.org/2f8n PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2f8n RCSB], [http://www.ebi.ac.uk/pdbsum/2f8n PDBsum]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2f8n FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2f8n OCA], [https://pdbe.org/2f8n PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2f8n RCSB], [https://www.ebi.ac.uk/pdbsum/2f8n PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2f8n ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
| [[http://www.uniprot.org/uniprot/H2AY_HUMAN H2AY_HUMAN]] Variant histone H2A which replaces conventional H2A in a subset of nucleosomes where it represses transcription. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Involved in stable X chromosome inactivation. Inhibits the binding of transcription factors and interferes with the activity of remodeling SWI/SNF complexes. Inhibits histone acetylation by EP300 and recruits class I HDACs, which induces a hypoacetylated state of chromatin. In addition, isoform 1, but not isoform 2, binds ADP-ribose and O-acetyl-ADP-ribose, and may be involved in ADP-ribose-mediated chromatin modulation.<ref>PMID:12718888</ref> <ref>PMID:15621527</ref> <ref>PMID:15897469</ref> <ref>PMID:16428466</ref> <ref>PMID:16107708</ref> [[http://www.uniprot.org/uniprot/H2B3A_MOUSE H2B3A_MOUSE]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [[http://www.uniprot.org/uniprot/H4_XENLA H4_XENLA]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [[http://www.uniprot.org/uniprot/H2A1H_MOUSE H2A1H_MOUSE]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [[http://www.uniprot.org/uniprot/H32_XENLA H32_XENLA]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [[http://www.uniprot.org/uniprot/H2B11_XENLA H2B11_XENLA]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. | | [https://www.uniprot.org/uniprot/H2B3A_MOUSE H2B3A_MOUSE] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Check<jmol> | | Check<jmol> |
| <jmolCheckbox> | | <jmolCheckbox> |
| <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/f8/2f8n_consurf.spt"</scriptWhenChecked> | | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/f8/2f8n_consurf.spt"</scriptWhenChecked> |
| <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> |
| <text>to colour the structure by Evolutionary Conservation</text> | | <text>to colour the structure by Evolutionary Conservation</text> |
Line 20: |
Line 21: |
|
| |
|
| ==See Also== | | ==See Also== |
| *[[Histone|Histone]] | | *[[Histone 3D structures|Histone 3D structures]] |
| == References ==
| |
| <references/>
| |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
| [[Category: African clawed frog]] | | [[Category: Homo sapiens]] |
| [[Category: Human]] | | [[Category: Large Structures]] |
| [[Category: Lk3 transgenic mice]] | | [[Category: Mus musculus]] |
| [[Category: Chakravarthy, S]] | | [[Category: Xenopus laevis]] |
| [[Category: Luger, K]] | | [[Category: Chakravarthy S]] |
| [[Category: Chromatin]] | | [[Category: Luger K]] |
| [[Category: Histone variant]]
| |
| [[Category: Macroh2a]]
| |
| [[Category: Ncp]]
| |
| [[Category: Nucleosome]]
| |
| [[Category: Structural protein-dna complex]]
| |