2f6d: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Seed}}
[[Image:2f6d.png|left|200px]]


<!--
==Structure of the complex of a glucoamylase from Saccharomycopsis fibuligera with acarbose==
The line below this paragraph, containing "STRUCTURE_2f6d", creates the "Structure Box" on the page.
<StructureSection load='2f6d' size='340' side='right'caption='[[2f6d]], [[Resolution|resolution]] 1.60&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[2f6d]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomycopsis_fibuligera Saccharomycopsis fibuligera]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2F6D OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2F6D FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.6&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=AC1:6-METHYL-5-(4,5,6-TRIHYDROXY-3-HYDROXYMETHYL-CYCLOHEX-2-ENYLAMINO)-TETRAHYDRO-PYRAN-2,3,4-TRIOL'>AC1</scene>, <scene name='pdbligand=GLC:ALPHA-D-GLUCOSE'>GLC</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene>, <scene name='pdbligand=PRD_900007:alpha-acarbose'>PRD_900007</scene></td></tr>
{{STRUCTURE_2f6d|  PDB=2f6d  |  SCENE=  }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2f6d FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2f6d OCA], [https://pdbe.org/2f6d PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2f6d RCSB], [https://www.ebi.ac.uk/pdbsum/2f6d PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2f6d ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/AMYG_SACFI AMYG_SACFI]
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/f6/2f6d_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2f6d ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Most glucoamylases (alpha-1,4-D-glucan glucohydrolase, EC 3.2.1.3) have structures consisting of both a catalytic and a starch binding domain. The structure of a glucoamylase from Saccharomycopsis fibuligera HUT 7212 (Glu), determined a few years ago, consists of a single catalytic domain. The structure of this enzyme with the resolution extended to 1.1 A and that of the enzyme-acarbose complex at 1.6 A resolution are presented here. The structure at atomic resolution, besides its high accuracy, shows clearly the influence of cryo-cooling, which is manifested in shrinkage of the molecule and lowering the volume of the unit cell. In the structure of the complex, two acarbose molecules are bound, one at the active site and the second at a site remote from the active site, curved around Tyr464 which resembles the inhibitor molecule in the 'sugar tongs' surface binding site in the structure of barley alpha-amylase isozyme 1 complexed with a thiomalto-oligosaccharide. Based on the close similarity in sequence of glucoamylase Glu, which does not degrade raw starch, to that of glucoamylase (Glm) from S. fibuligera IFO 0111, a raw starch-degrading enzyme, it is reasonable to expect the presence of the remote starch binding site at structurally equivalent positions in both enzymes. We propose the role of this site is to fix the enzyme onto the surface of a starch granule while the active site degrades the polysaccharide. This hypothesis is verified here by the preparation of mutants of glucoamylases Glu and Glm.


===Structure of the complex of a glucoamylase from Saccharomycopsis fibuligera with acarbose===
Structure of the complex of a yeast glucoamylase with acarbose reveals the presence of a raw starch binding site on the catalytic domain.,Sevcik J, Hostinova E, Solovicova A, Gasperik J, Dauter Z, Wilson KS FEBS J. 2006 May;273(10):2161-71. PMID:16649993<ref>PMID:16649993</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 2f6d" style="background-color:#fffaf0;"></div>


<!--
==See Also==
The line below this paragraph, {{ABSTRACT_PUBMED_16649993}}, adds the Publication Abstract to the page
*[[Alpha-glucosidase 3D structures|Alpha-glucosidase 3D structures]]
(as it appears on PubMed at http://www.pubmed.gov), where 16649993 is the PubMed ID number.
== References ==
-->
<references/>
{{ABSTRACT_PUBMED_16649993}}
__TOC__
 
</StructureSection>
==About this Structure==
[[Category: Large Structures]]
2F6D is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Saccharomycopsis_fibuligera Saccharomycopsis fibuligera]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2F6D OCA].
 
==Reference==
Structure of the complex of a yeast glucoamylase with acarbose reveals the presence of a raw starch binding site on the catalytic domain., Sevcik J, Hostinova E, Solovicova A, Gasperik J, Dauter Z, Wilson KS, FEBS J. 2006 May;273(10):2161-71. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/16649993 16649993]
[[Category: Glucan 1,4-alpha-glucosidase]]
[[Category: Saccharomycopsis fibuligera]]
[[Category: Saccharomycopsis fibuligera]]
[[Category: Single protein]]
[[Category: Dauter Z]]
[[Category: Dauter, Z.]]
[[Category: Gasperik J]]
[[Category: Gasperik, J.]]
[[Category: Hostinova E]]
[[Category: Hostinova, E.]]
[[Category: Sevcik J]]
[[Category: Sevcik, J.]]
[[Category: Solovicova A]]
[[Category: Solovicova, A.]]
[[Category: Wilson KS]]
[[Category: Wilson, K S.]]
[[Category: Protein-acarbose complex]]
[[Category: Sugar tong]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Jul 28 14:25:24 2008''

Latest revision as of 10:43, 23 August 2023

Structure of the complex of a glucoamylase from Saccharomycopsis fibuligera with acarboseStructure of the complex of a glucoamylase from Saccharomycopsis fibuligera with acarbose

Structural highlights

2f6d is a 1 chain structure with sequence from Saccharomycopsis fibuligera. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.6Å
Ligands:, , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

AMYG_SACFI

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Most glucoamylases (alpha-1,4-D-glucan glucohydrolase, EC 3.2.1.3) have structures consisting of both a catalytic and a starch binding domain. The structure of a glucoamylase from Saccharomycopsis fibuligera HUT 7212 (Glu), determined a few years ago, consists of a single catalytic domain. The structure of this enzyme with the resolution extended to 1.1 A and that of the enzyme-acarbose complex at 1.6 A resolution are presented here. The structure at atomic resolution, besides its high accuracy, shows clearly the influence of cryo-cooling, which is manifested in shrinkage of the molecule and lowering the volume of the unit cell. In the structure of the complex, two acarbose molecules are bound, one at the active site and the second at a site remote from the active site, curved around Tyr464 which resembles the inhibitor molecule in the 'sugar tongs' surface binding site in the structure of barley alpha-amylase isozyme 1 complexed with a thiomalto-oligosaccharide. Based on the close similarity in sequence of glucoamylase Glu, which does not degrade raw starch, to that of glucoamylase (Glm) from S. fibuligera IFO 0111, a raw starch-degrading enzyme, it is reasonable to expect the presence of the remote starch binding site at structurally equivalent positions in both enzymes. We propose the role of this site is to fix the enzyme onto the surface of a starch granule while the active site degrades the polysaccharide. This hypothesis is verified here by the preparation of mutants of glucoamylases Glu and Glm.

Structure of the complex of a yeast glucoamylase with acarbose reveals the presence of a raw starch binding site on the catalytic domain.,Sevcik J, Hostinova E, Solovicova A, Gasperik J, Dauter Z, Wilson KS FEBS J. 2006 May;273(10):2161-71. PMID:16649993[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Sevcik J, Hostinova E, Solovicova A, Gasperik J, Dauter Z, Wilson KS. Structure of the complex of a yeast glucoamylase with acarbose reveals the presence of a raw starch binding site on the catalytic domain. FEBS J. 2006 May;273(10):2161-71. PMID:16649993 doi:10.1111/j.1742-4658.2006.05230.x

2f6d, resolution 1.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA