2f3r: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:2f3r.gif|left|200px]]


{{Structure
==Crystal Structure Of E.coli Guanylate Kinase In Complex With Ap5G==
|PDB= 2f3r |SIZE=350|CAPTION= <scene name='initialview01'>2f3r</scene>, resolution 2.50&Aring;
<StructureSection load='2f3r' size='340' side='right'caption='[[2f3r]], [[Resolution|resolution]] 2.50&Aring;' scene=''>
|SITE=  
== Structural highlights ==
|LIGAND= <scene name='pdbligand=G5P:P1-(5&#39;-ADENOSYL)-P5-(5&#39;-GUANOSYL) PENTAPHOSPHATE'>G5P</scene>
<table><tr><td colspan='2'>[[2f3r]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2F3R OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2F3R FirstGlance]. <br>
|ACTIVITY= [http://en.wikipedia.org/wiki/Guanylate_kinase Guanylate kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.4.8 2.7.4.8]  
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.5&#8491;</td></tr>
|GENE= gmk, spoR ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 Escherichia coli])
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=G5P:P1-(5-ADENOSYL)-P5-(5-GUANOSYL)+PENTAPHOSPHATE'>G5P</scene></td></tr>
}}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2f3r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2f3r OCA], [https://pdbe.org/2f3r PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2f3r RCSB], [https://www.ebi.ac.uk/pdbsum/2f3r PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2f3r ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/KGUA_ECOLI KGUA_ECOLI] Essential for recycling GMP and indirectly, cGMP.<ref>PMID:8390989</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/f3/2f3r_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2f3r ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Guanosine monophosphate kinases (GMPK), by catalyzing the phosphorylation of GMP or dGMP, are of dual potential in assisting the activation of anti-viral prodrugs or as candidates for antibiotic strategies. Human GMPK is an obligate step for the activation of acyclic guanosine analogs, such as ganciclovir, which necessitate efficient phosphorylation, while GMPK from bacterial pathogens, in which this enzyme is essential, are potential targets for therapeutic inhibition. Here we analyze these two aspects of GMPK activity with the crystal structures of Escherichia coli GMPK in complex with ganciclovir-monophosphate (GCV-MP) and with a bi-substrate inhibitor, Ap5G. GCV-MP binds as GMP to the GMP-binding domain, which is identical in E. coli and human GMPKs, but unlike the natural substrate fails to stabilize the closed, catalytically-competent conformation of this domain. Comparison with GMP- and GDP-bound GMPK structures identifies the 2'hydroxyl of the ribose moiety as responsible for hooking the GMP-binding domain onto the CORE domain. Absence of this hydroxyl in GCV-MP impairs the stabilization of the active conformation, and explains why GCV-MP is phosphorylated less efficiently than GMP, but as efficiently as dGMP. In contrast, Ap5G is an efficient inhibitor of GMPK. The crystal structure shows that Ap5G locks an incompletely closed conformation of the enzyme, in which the adenine moiety is located outside its expected binding site. Instead, it binds at a subunit interface that is unique to the bacterial enzyme, which is in equilibrium between a dimeric and an hexameric form in solution. This suggests that inhibitors could be designed to bind at this interface such as to prevent nucleotide-induced domain closure. Altogether, these complexes point to domain motions as critical components to be evaluated in therapeutic strategies targeting NMP kinases, with opposite effects depending on whether efficient phosphorylation or inhibition is being sought after.


'''Crystal Structure Of E.coli Guanylate Kinase In Complex With Ap5G'''
Crystal structures of GMP kinase in complex with ganciclovir monophosphate and Ap5G.,Hible G, Daalova P, Gilles AM, Cherfils J Biochimie. 2006 Sep;88(9):1157-64. Epub 2006 Apr 27. PMID:16690197<ref>PMID:16690197</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 2f3r" style="background-color:#fffaf0;"></div>


==Overview==
==See Also==
Guanosine monophosphate kinases (GMPK), by catalyzing the phosphorylation of GMP or dGMP, are of dual potential in assisting the activation of anti-viral prodrugs or as candidates for antibiotic strategies. Human GMPK is an obligate step for the activation of acyclic guanosine analogs, such as ganciclovir, which necessitate efficient phosphorylation, while GMPK from bacterial pathogens, in which this enzyme is essential, are potential targets for therapeutic inhibition. Here we analyze these two aspects of GMPK activity with the crystal structures of Escherichia coli GMPK in complex with ganciclovir-monophosphate (GCV-MP) and with a bi-substrate inhibitor, Ap5G. GCV-MP binds as GMP to the GMP-binding domain, which is identical in E. coli and human GMPKs, but unlike the natural substrate fails to stabilize the closed, catalytically-competent conformation of this domain. Comparison with GMP- and GDP-bound GMPK structures identifies the 2'hydroxyl of the ribose moiety as responsible for hooking the GMP-binding domain onto the CORE domain. Absence of this hydroxyl in GCV-MP impairs the stabilization of the active conformation, and explains why GCV-MP is phosphorylated less efficiently than GMP, but as efficiently as dGMP. In contrast, Ap5G is an efficient inhibitor of GMPK. The crystal structure shows that Ap5G locks an incompletely closed conformation of the enzyme, in which the adenine moiety is located outside its expected binding site. Instead, it binds at a subunit interface that is unique to the bacterial enzyme, which is in equilibrium between a dimeric and an hexameric form in solution. This suggests that inhibitors could be designed to bind at this interface such as to prevent nucleotide-induced domain closure. Altogether, these complexes point to domain motions as critical components to be evaluated in therapeutic strategies targeting NMP kinases, with opposite effects depending on whether efficient phosphorylation or inhibition is being sought after.
*[[Guanylate kinase 3D structures|Guanylate kinase 3D structures]]
 
== References ==
==About this Structure==
<references/>
2F3R is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2F3R OCA].
__TOC__
 
</StructureSection>
==Reference==
Crystal structures of GMP kinase in complex with ganciclovir monophosphate and Ap5G., Hible G, Daalova P, Gilles AM, Cherfils J, Biochimie. 2006 Sep;88(9):1157-64. Epub 2006 Apr 27. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/16690197 16690197]
[[Category: Escherichia coli]]
[[Category: Escherichia coli]]
[[Category: Guanylate kinase]]
[[Category: Large Structures]]
[[Category: Single protein]]
[[Category: Cherfils J]]
[[Category: Cherfils, J.]]
[[Category: Hible G]]
[[Category: Hible, G.]]
[[Category: G5P]]
[[Category: gmp kinase]]
[[Category: guanylate kinase]]
[[Category: nucleotide analogue]]
[[Category: transferase]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 23 15:03:51 2008''

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA