2aro: Difference between revisions
No edit summary |
No edit summary |
||
(12 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal Structure Of The Native Histone Octamer To 2.1 Angstrom Resolution, Crystalised In The Presence Of S-Nitrosoglutathione== | |||
<StructureSection load='2aro' size='340' side='right'caption='[[2aro]], [[Resolution|resolution]] 2.10Å' scene=''> | |||
| | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2aro]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Gallus_gallus Gallus gallus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2ARO OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2ARO FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.1Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2aro FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2aro OCA], [https://pdbe.org/2aro PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2aro RCSB], [https://www.ebi.ac.uk/pdbsum/2aro PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2aro ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/H2A4_CHICK H2A4_CHICK] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ar/2aro_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2aro ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
A H3 dimer band is produced when purified native histone octamers are run on an SDS-PAGE gel in a beta-mercaptoethanol-free environment. To investigate this, native histone octamer crystals, derived from chicken erythrocytes, and of structure (H2A-H2B)-(H4-H3)-(H3'-H4')-(H2B'-H2A'), were grown in 2 M KCl, 1.35 M potassium phosphates and 250-350 microM of the oxidising agent S-nitrosoglutathione, pH 6.9. X-ray diffraction data were acquired to 2.10 A resolution, yielding a structure with an Rwork value of 18.6% and an Rfree of 22.5%. The space group is P6(5), the asymmetric unit of which contains one complete octamer. Compared to the 1.90 A resolution, unoxidised native histone octamer structure, the crystals show a reduction of 2.5% in the c-axis of the unit cell, and free-energy calculations reveal that the H3-H3' dimer interface in the latter has become thermodynamically stable, in contrast to the former. Although the inter-sulphur distance of the two H3 cysteines in the oxidised native histone octamer has reduced to 6 A from the 7 A of the unoxidised form, analysis of the hydrogen bonds that constitute the (H4-H3)-(H3'-H4') tetramer indicates that the formation of a disulphide bond in the H3-H3' dimer interface is incompatible with stable tetramer formation. The biochemical and biophysical evidence, taken as a whole, is indicative of crystals that have a stable H3-H3' dimer interface, possibly extending to the interface within an isolated H3-H3' dimer, observed in SDS-PAGE gels. | |||
The oxidised histone octamer does not form a H3 disulphide bond.,Wood CM, Sodngam S, Nicholson JM, Lambert SJ, Reynolds CD, Baldwin JP Biochim Biophys Acta. 2006 Aug;1764(8):1356-62. Epub 2006 Jul 21. PMID:16920041<ref>PMID:16920041</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2aro" style="background-color:#fffaf0;"></div> | |||
== | ==See Also== | ||
*[[Histone 3D structures|Histone 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
== | |||
[[Category: Gallus gallus]] | [[Category: Gallus gallus]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Baldwin | [[Category: Baldwin JP]] | ||
[[Category: Lambert | [[Category: Lambert SJ]] | ||
[[Category: Nicholson | [[Category: Nicholson JM]] | ||
[[Category: Reynolds | [[Category: Reynolds CD]] | ||
[[Category: Sodngam | [[Category: Sodngam S]] | ||
[[Category: Wood | [[Category: Wood CM]] | ||