2amo: Difference between revisions
No edit summary |
No edit summary |
||
(13 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | ==Loose Dimer of a Bacillus subtilis Nitric Oxide Synthase== | ||
<StructureSection load='2amo' size='340' side='right'caption='[[2amo]], [[Resolution|resolution]] 2.60Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2amo]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_subtilis Bacillus subtilis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2AMO OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2AMO FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.6Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2amo FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2amo OCA], [https://pdbe.org/2amo PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2amo RCSB], [https://www.ebi.ac.uk/pdbsum/2amo PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2amo ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/NOSO_BACSU NOSO_BACSU] Catalyzes the production of nitric oxide. | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/am/2amo_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2amo ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Cooperativity among ligand binding, subunit association, and protein folding has implications for enzyme regulation as well as protein aggregation events associated with disease. The binding of substrate l-arginine or cofactor tetrahydrobiopterin converts nitric oxide synthases (NOSs) from a "loose dimer", with an exposed active center and higher sensitivity to proteolysis, to a "tight dimer" competent for catalysis. The crystallographic structure of the Bacillus subtilis NOS loose dimer shows an altered association state with severely destabilized subdomains. Ligand binding or heme reduction converts loose dimers to tight dimers in solution and crystals. Mutations at key positions in the dimer interface that distinguish prokaryotic from eukaryotic NOSs affect the propensity to form loose dimers. The loose dimer structure indicates that non-native interactions can mediate subunit association in NOS. | Cooperativity among ligand binding, subunit association, and protein folding has implications for enzyme regulation as well as protein aggregation events associated with disease. The binding of substrate l-arginine or cofactor tetrahydrobiopterin converts nitric oxide synthases (NOSs) from a "loose dimer", with an exposed active center and higher sensitivity to proteolysis, to a "tight dimer" competent for catalysis. The crystallographic structure of the Bacillus subtilis NOS loose dimer shows an altered association state with severely destabilized subdomains. Ligand binding or heme reduction converts loose dimers to tight dimers in solution and crystals. Mutations at key positions in the dimer interface that distinguish prokaryotic from eukaryotic NOSs affect the propensity to form loose dimers. The loose dimer structure indicates that non-native interactions can mediate subunit association in NOS. | ||
Structure of a loose dimer: an intermediate in nitric oxide synthase assembly.,Pant K, Crane BR J Mol Biol. 2005 Sep 30;352(4):932-40. PMID:16126221<ref>PMID:16126221</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2amo" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Nitric Oxide Synthase 3D structures|Nitric Oxide Synthase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Bacillus subtilis]] | [[Category: Bacillus subtilis]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Crane BR]] | |||
[[Category: Crane | [[Category: Pant K]] | ||
[[Category: Pant | |||