1zjr: Difference between revisions
No edit summary |
No edit summary |
||
(13 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | ==Crystal Structure of A. aeolicus TrmH/SpoU tRNA modifying enzyme== | ||
<StructureSection load='1zjr' size='340' side='right'caption='[[1zjr]], [[Resolution|resolution]] 1.85Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1zjr]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Aquifex_aeolicus Aquifex aeolicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1ZJR OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1ZJR FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.85Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1zjr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1zjr OCA], [https://pdbe.org/1zjr PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1zjr RCSB], [https://www.ebi.ac.uk/pdbsum/1zjr PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1zjr ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/TRMH_AQUAE TRMH_AQUAE] Specifically methylates guanosine-18 in various tRNAs (By similarity). | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/zj/1zjr_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1zjr ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Biological RNAs contain a variety of post-transcriptional modifications that facilitate their efficient function in the cellular environment. One of the two most common forms of modification is methylation of the 2'-hydroxyl group of the ribose sugar, which is performed by a number of S-adenosylmethionine (SAM) dependent methyltransferases. In bacteria, many of these modifications in tRNA and rRNA are carried out by the alpha/beta-knot superfamily of enzymes, whose SAM-binding pocket is created by a characteristic deep trefoil knot. TrmH, an enzyme found throughout all three kingdoms of life, modifies the universally conserved guanosine 18 position of tRNA. The crystal structure of TrmH from the thermophilic bacterium Aquifex aeolicus has been determined at 1.85 A resolution using data collected from a synchrotron-radiation source. The protein reveals a fold typical of members of the SpoU clan of proteins, a subfamily of the alpha/beta-knot superfamily, with alpha-helical extensions at the N- and C-termini that are likely to be involved in tRNA binding. | Biological RNAs contain a variety of post-transcriptional modifications that facilitate their efficient function in the cellular environment. One of the two most common forms of modification is methylation of the 2'-hydroxyl group of the ribose sugar, which is performed by a number of S-adenosylmethionine (SAM) dependent methyltransferases. In bacteria, many of these modifications in tRNA and rRNA are carried out by the alpha/beta-knot superfamily of enzymes, whose SAM-binding pocket is created by a characteristic deep trefoil knot. TrmH, an enzyme found throughout all three kingdoms of life, modifies the universally conserved guanosine 18 position of tRNA. The crystal structure of TrmH from the thermophilic bacterium Aquifex aeolicus has been determined at 1.85 A resolution using data collected from a synchrotron-radiation source. The protein reveals a fold typical of members of the SpoU clan of proteins, a subfamily of the alpha/beta-knot superfamily, with alpha-helical extensions at the N- and C-termini that are likely to be involved in tRNA binding. | ||
Structure of a class II TrmH tRNA-modifying enzyme from Aquifex aeolicus.,Pleshe E, Truesdell J, Batey RT Acta Crystallogr Sect F Struct Biol Cryst Commun. 2005 Aug 1;61(Pt, 8):722-8. Epub 2005 Jul 30. PMID:16511140<ref>PMID:16511140</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1zjr" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Aquifex aeolicus]] | [[Category: Aquifex aeolicus]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Batey RT]] | |||
[[Category: Batey | [[Category: Pleshe E]] | ||
[[Category: Pleshe | [[Category: Truesdell J]] | ||
[[Category: Truesdell | |||