1xql: Difference between revisions
No edit summary |
No edit summary |
||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Effect of a Y265F Mutant on the Transamination Based Cycloserine Inactivation of Alanine Racemase== | ==Effect of a Y265F Mutant on the Transamination Based Cycloserine Inactivation of Alanine Racemase== | ||
<StructureSection load='1xql' size='340' side='right' caption='[[1xql]], [[Resolution|resolution]] 1.80Å' scene=''> | <StructureSection load='1xql' size='340' side='right'caption='[[1xql]], [[Resolution|resolution]] 1.80Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1xql]] is a 2 chain structure with sequence from [ | <table><tr><td colspan='2'>[[1xql]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Geobacillus_stearothermophilus Geobacillus stearothermophilus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1XQL OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1XQL FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=4AX:(R)-4-AMINO-ISOXAZOLIDIN-3-ONE'>4AX</scene>, <scene name='pdbligand=ACY:ACETIC+ACID'>ACY</scene>, <scene name='pdbligand=PLP:PYRIDOXAL-5-PHOSPHATE'>PLP</scene>, <scene name='pdbligand=PMH:(5-HYDROXY-4-{[(3-HYDROXYISOXAZOL-4-YL)AMINO]METHYL}-6-METHYLPYRIDIN-3-YL)METHYL+DIHYDROGEN+PHOSPHATE'>PMH</scene>, <scene name='pdbligand=PMP:4-DEOXY-4-AMINOPYRIDOXAL-5-PHOSPHATE'>PMP</scene | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=4AX:(R)-4-AMINO-ISOXAZOLIDIN-3-ONE'>4AX</scene>, <scene name='pdbligand=ACY:ACETIC+ACID'>ACY</scene>, <scene name='pdbligand=KCX:LYSINE+NZ-CARBOXYLIC+ACID'>KCX</scene>, <scene name='pdbligand=PLP:PYRIDOXAL-5-PHOSPHATE'>PLP</scene>, <scene name='pdbligand=PMH:(5-HYDROXY-4-{[(3-HYDROXYISOXAZOL-4-YL)AMINO]METHYL}-6-METHYLPYRIDIN-3-YL)METHYL+DIHYDROGEN+PHOSPHATE'>PMH</scene>, <scene name='pdbligand=PMP:4-DEOXY-4-AMINOPYRIDOXAL-5-PHOSPHATE'>PMP</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1xql FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1xql OCA], [https://pdbe.org/1xql PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1xql RCSB], [https://www.ebi.ac.uk/pdbsum/1xql PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1xql ProSAT]</span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/ALR_GEOSE ALR_GEOSE] Catalyzes the interconversion of L-alanine and D-alanine. Also weakly active on serine.<ref>PMID:10502689</ref> <ref>PMID:12203980</ref> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/xq/1xql_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/xq/1xql_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1xql ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
Line 30: | Line 28: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 1xql" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
*[[Alanine racemase|Alanine racemase]] | *[[Alanine racemase 3D structures|Alanine racemase 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Geobacillus stearothermophilus]] | [[Category: Geobacillus stearothermophilus]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: | [[Category: Fenn TD]] | ||
[[Category: | [[Category: Holyoak T]] | ||
[[Category: | [[Category: Ringe D]] | ||
[[Category: | [[Category: Stamper GF]] | ||
Latest revision as of 09:48, 23 August 2023
Effect of a Y265F Mutant on the Transamination Based Cycloserine Inactivation of Alanine RacemaseEffect of a Y265F Mutant on the Transamination Based Cycloserine Inactivation of Alanine Racemase
Structural highlights
FunctionALR_GEOSE Catalyzes the interconversion of L-alanine and D-alanine. Also weakly active on serine.[1] [2] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe requirement for d-alanine in the peptidoglycan layer of bacterial cell walls is fulfilled in part by alanine racemase (EC 5.1.1.1), a pyridoxal 5'-phosphate (PLP)-assisted enzyme. The enzyme utilizes two antiparallel bases focused at the C(alpha) position and oriented perpendicular to the PLP ring to facilitate the equilibration of alanine enantiomers. Understanding how this two-base system is utilized and controlled to yield reaction specificity is therefore a potential means for designing antibiotics. Cycloserine is a known alanine racemase suicide substrate, although its mechanism of inactivation is based on transaminase chemistry. Here we characterize the effects of a Y265F mutant (Tyr265 acts as the catalytic base in the l-isomer case) of Bacillus stearothermophilus alanine racemase on cycloserine inactivation. The Y265F mutant reduces racemization activity 1600-fold [Watanabe, A., Yoshimura, T., Mikami, B., and Esaki, N. (1999) J. Biochem. 126, 781-786] and only leads to formation of the isoxazole end product (the result of the transaminase pathway) in the case of d-cycloserine, in contrast to results obtained using the wild-type enzyme. l-Cycloserine, on the other hand, utilizes a number of alternative pathways in the absence of Y265, emphasizing the importance of Y265 in both the inactivation and racemization pathway. In combination with the kinetics of inactivation, these results suggest roles for each of the two catalytic bases in racemization and inactivation, as well as the importance of Y265 in "steering" the chemistry to favor one pathway over another. Effect of a Y265F mutant on the transamination-based cycloserine inactivation of alanine racemase.,Fenn TD, Holyoak T, Stamper GF, Ringe D Biochemistry. 2005 Apr 12;44(14):5317-27. PMID:15807525[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|